Harnessing the Power of Artificial Intelligence and Machine Learning in Mineral Exploration—Opportunities and Cautionary Notes

SEG Discovery ◽  
2021 ◽  
pp. 19-31
Author(s):  
Jon Woodhead ◽  
Mathieu Landry

Editor’s note: The aim of the Geology and Mining series is to introduce early-career professionals and students to various aspects of mineral exploration, development, and mining in order to share the experiences and insight of each author on the myriad of topics involved with the mineral industry and the ways in which geoscientists contribute to each. Abstract Artificial intelligence (AI), and machine learning (ML) have emerged in the last few years from relative obscurity in the mineral exploration sector and they now attract significant attention from people in both industry and academia. However, due to the novelty of AI and ML applications, their practical use and potential remain enigmatic to many beyond a relatively few expert practitioners. We introduce this subject for the nonexpert and review some of the current applications and evolving uses. For the most traditionally minded geologist, we argue that ML can be an invaluable new tool, contributing to topics that range from exploratory data analysis to automated core logging and mineral prospectivity mapping, such that it will have a substantial impact on how exploration is conducted in the future. However, ML algorithms perform best with a large amount of homogeneously distributed clean data for a well-constrained objective. For this reason, the application to exploration strategy, especially for optimizing target selection, will be a challenge where data are heterogeneous, multiscale, amorphous, and discontinuous. For the more tech-savvy geologist and data scientist, we provide notes of caution regarding the limitations of ML applied to geoscience data, and reasons to temper expectations. Nonetheless, we project that such technologies, if used in an appropriate manner, will eventually be part of the full range of exploration tasks, allowing explorers to do more with their data in less time. However, whether this will tip the scales in favor of higher discovery rates remains to be demonstrated.

2021 ◽  
Vol 128 (7) ◽  
pp. 1100-1118
Author(s):  
Sandosh Padmanabhan ◽  
Tran Quoc Bao Tran ◽  
Anna F. Dominiczak

Hypertension remains the largest modifiable cause of mortality worldwide despite the availability of effective medications and sustained research efforts over the past 100 years. Hypertension requires transformative solutions that can help reduce the global burden of the disease. Artificial intelligence and machine learning, which have made a substantial impact on our everyday lives over the last decade may be the route to this transformation. However, artificial intelligence in health care is still in its nascent stages and realizing its potential requires numerous challenges to be overcome. In this review, we provide a clinician-centric perspective on artificial intelligence and machine learning as applied to medicine and hypertension. We focus on the main roadblocks impeding implementation of this technology in clinical care and describe efforts driving potential solutions. At the juncture, there is a critical requirement for clinical and scientific expertise to work in tandem with algorithmic innovation followed by rigorous validation and scrutiny to realize the promise of artificial intelligence-enabled health care for hypertension and other chronic diseases.


Author(s):  
Matthew N. O. Sadiku ◽  
Chandra M. M Kotteti ◽  
Sarhan M. Musa

Machine learning is an emerging field of artificial intelligence which can be applied to the agriculture sector. It refers to the automated detection of meaningful patterns in a given data.  Modern agriculture seeks ways to conserve water, use nutrients and energy more efficiently, and adapt to climate change.  Machine learning in agriculture allows for more accurate disease diagnosis and crop disease prediction. This paper briefly introduces what machine learning can do in the agriculture sector.


Author(s):  
M. A. Fesenko ◽  
G. V. Golovaneva ◽  
A. V. Miskevich

The new model «Prognosis of men’ reproductive function disorders» was developed. The machine learning algorithms (artificial intelligence) was used for this purpose, the model has high prognosis accuracy. The aim of the model applying is prioritize diagnostic and preventive measures to minimize reproductive system diseases complications and preserve workers’ health and efficiency.


2018 ◽  
Vol 15 (1) ◽  
pp. 6-28 ◽  
Author(s):  
Javier Pérez-Sianes ◽  
Horacio Pérez-Sánchez ◽  
Fernando Díaz

Background: Automated compound testing is currently the de facto standard method for drug screening, but it has not brought the great increase in the number of new drugs that was expected. Computer- aided compounds search, known as Virtual Screening, has shown the benefits to this field as a complement or even alternative to the robotic drug discovery. There are different methods and approaches to address this problem and most of them are often included in one of the main screening strategies. Machine learning, however, has established itself as a virtual screening methodology in its own right and it may grow in popularity with the new trends on artificial intelligence. Objective: This paper will attempt to provide a comprehensive and structured review that collects the most important proposals made so far in this area of research. Particular attention is given to some recent developments carried out in the machine learning field: the deep learning approach, which is pointed out as a future key player in the virtual screening landscape.


Author(s):  
William B. Rouse

This book discusses the use of models and interactive visualizations to explore designs of systems and policies in determining whether such designs would be effective. Executives and senior managers are very interested in what “data analytics” can do for them and, quite recently, what the prospects are for artificial intelligence and machine learning. They want to understand and then invest wisely. They are reasonably skeptical, having experienced overselling and under-delivery. They ask about reasonable and realistic expectations. Their concern is with the futurity of decisions they are currently entertaining. They cannot fully address this concern empirically. Thus, they need some way to make predictions. The problem is that one rarely can predict exactly what will happen, only what might happen. To overcome this limitation, executives can be provided predictions of possible futures and the conditions under which each scenario is likely to emerge. Models can help them to understand these possible futures. Most executives find such candor refreshing, perhaps even liberating. Their job becomes one of imagining and designing a portfolio of possible futures, assisted by interactive computational models. Understanding and managing uncertainty is central to their job. Indeed, doing this better than competitors is a hallmark of success. This book is intended to help them understand what fundamentally needs to be done, why it needs to be done, and how to do it. The hope is that readers will discuss this book and develop a “shared mental model” of computational modeling in the process, which will greatly enhance their chances of success.


2021 ◽  
Vol 11 (1) ◽  
pp. 32
Author(s):  
Oliwia Koteluk ◽  
Adrian Wartecki ◽  
Sylwia Mazurek ◽  
Iga Kołodziejczak ◽  
Andrzej Mackiewicz

With an increased number of medical data generated every day, there is a strong need for reliable, automated evaluation tools. With high hopes and expectations, machine learning has the potential to revolutionize many fields of medicine, helping to make faster and more correct decisions and improving current standards of treatment. Today, machines can analyze, learn, communicate, and understand processed data and are used in health care increasingly. This review explains different models and the general process of machine learning and training the algorithms. Furthermore, it summarizes the most useful machine learning applications and tools in different branches of medicine and health care (radiology, pathology, pharmacology, infectious diseases, personalized decision making, and many others). The review also addresses the futuristic prospects and threats of applying artificial intelligence as an advanced, automated medicine tool.


Sign in / Sign up

Export Citation Format

Share Document