FORMULATION AND EVALUATION OF SUSTAIN RELEASE CYCLOBENZAPRINE HYDROCHLORIDE PELLETS

INDIAN DRUGS ◽  
2017 ◽  
Vol 54 (05) ◽  
pp. 19-25
Author(s):  
B. Venkateswara Reddy ◽  
◽  
K. Navaneetha

Cyclobenzaprine Hydrochloride is a centrally acting muscle relaxant which is mostly available in the form of tablets and capsules. The present aim of the study was to develop a sustained release formulation of cyclobenzaprine Hydrochloride pellets using powder layering technique. Nine different formulations of pellets were prepared by using different concentrations of Ethyl Cellulose-50, Hypromellose (HPMC), and PEG 6000 of all formulations, F8 formulation was the optimized formulation. The kinetic studies of F8 formulation was best fitted in the First order model as it had the highest value (R2 = 0.981) and it follows non- fickian diffusion. Among all the formulations F8 gave better drug release 85.7% when compared to innovator, F8 was selected as optimized formulation. The optimized formulation was kept for stability studies for 3 months at 40°C /75% RH and 25°C /60% RH and the results indicated that there was no much variation in their physiochemical characteristics and the formulation was found to be stable.

2019 ◽  
Vol 44 (4) ◽  
pp. 307-315 ◽  
Author(s):  
Xueya Dai ◽  
Hua Song ◽  
Hualin Song ◽  
Jing Gong ◽  
Feng Li ◽  
...  

A nickel phosphide hydrodeoxygenation catalyst (Ni2P-O/MCM-41) was prepared using a new synthetic method. The as-prepared catalyst was evaluated in the hydrodeoxygenation of benzofuran, and the effects of reaction temperature, pressure, and the H2/liquid ratio were investigated. A pseudo first-order model was employed to describe the reaction kinetics of benzofuran hydrodeoxygenation over the Ni2P-O/MCM-41 catalyst. The reaction rate constants ( k1– k5) at different temperatures were determined according to this model. At 533 K, the conversion of 2-ethylphenol in to ethylbenzene began to increase dramatically, and the yield of O-free product, ethylcyclohexane, started to increase rapidly. At 573 K, 3.0 MPa, and a H2/liquid ratio of 500 (V/V), the conversion of benzofuran over Ni2P-O/MCM-41 reached 93%, and the combined yield of O-free products was 91%. Contact time analysis indicated that demethylation was not favored over the Ni2P-O/MCM-41 catalyst.


2019 ◽  
Vol 9 (5) ◽  
pp. 337-346
Author(s):  
Imane Lebkiri ◽  
Brahim Abbou ◽  
Lamya Kadiri ◽  
Abdelkarim Ouass ◽  
Youness Essaadaoui ◽  
...  

The present work aims the elimination of an organic dye Methylene Blue (MB) by adsorption on the polyacrylamide (PAAM) hydrogel. Several experiments series were then carried out in order to study the influence on the adsorption capacity of certain parameters such as the mass of the adsorbent, the pH, the contact time, the initial dye concentration and the temperature. The maximal capacity is 1620 mg/g it was obtained at T = 25°C, pH = 6, [BM] = 200 ppm and 0.013g of the adsorbent. The adsorption kinetics of the dye on the support is well described by the first-order model. The adsorption isotherms of the adsorbent/adsorbate systems studied are satisfactorily described by the Langmuir mathematical model. On the other hand, the thermodynamic study revealed that adsorption is spontaneous and endothermic.


2019 ◽  
Vol 16 (4) ◽  
pp. 364-374 ◽  
Author(s):  
Govind Soni ◽  
Khushwant S. Yadav ◽  
Mahesh K. Gupta

Background: Gefitinib (GEF), the kinase inhibitor, is presently available as tablets to be taken orally in high doses of 250-500 mg per day due to its poor solubility. The solubility issues affect not only its onset of action but also the bioavailability. These drawbacks foresight the need to have an alternate dosage form, preferably a sustained release formulation. Methods: In the present study, microparticles were prepared by emulsion solvent evaporation using PLGA 50:50 (GEF-PLGA MP). A 32 factorial design was used to optimize the critical quality parameters to the set mean particle size in the range of 7.4±2.5 µm and entrapment efficiency of 80%. SEM microscopy of the prepared microparticles confirmed to have a spherical smooth shape. The GEFPLGA- MPs sustained the release of GEF for 72 hours. The first-order kinetics ruled the mechanism of drug release and was predicted to follow Fickian diffusion. Result: Anticancer efficacy was judged by the cytotoxicity studies using the L132 lung cancer cells. MTT assay showed 3-fold enhanced cytotoxicity of GEF loaded microparticles against L132 cells as compared to plain GEF. Conclusion: It was concluded that gefitinib can be efficiently loaded into the biodegradable polymer PLGA to provide sustained release of the drug.


2011 ◽  
Vol 64 (2) ◽  
pp. 528-533 ◽  
Author(s):  
Jing Sun ◽  
Xue-Jun Kang ◽  
Yu-Qin Ma ◽  
Li-Qin Chen ◽  
Yu Wang ◽  
...  

The adsorption properties of benzene, p-dichlorobenzene and nitrobenzene on polymer nanofibers were studied. Compared with polyacrylonitrile nanofiber, polystyrene (PS) nanofiber presented better adsorption performance. Langmuir and Freundlich adsorption models were used for the mathematical description of adsorption equilibria, and Freundlich isotherms fitted better. Kinetic studies showed that the adsorption of PS nanofiber followed pseudo first-order model. Various thermodynamic parameters such as standard free energy (ΔG), enthalpy (ΔH) and entropy (ΔS) were calculated for predicting the adsorption nature of PS nanofiber for three benzenes, which indicated that the adsorption was spontaneous and a physical process. The regeneration efficiency maintains over 80% after five cycles of adsorption/desorption tests. It showed that PS nanofibers are promising candidates for adsorption and removal of aromatic hydrocarbons from water.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Qing Liu ◽  
Wenjing Guo ◽  
Mei Yang ◽  
Kejie Wang ◽  
Weijun Liu ◽  
...  

Based on the formation of carbodiimide compounds between carboxyl and primary amines, hollow microspheres arising from the folic acid (folate-FA) grafted onto the surface of the modified hydroxyapatite were successfully prepared. The hollow morphology and composition of the FA-grafted hydroxyapatite microspheres were confirmed by scanning electron microscopy (SEM) and other characterizations. Brunauer-Emmett-Teller (BET) assay revealed the specific surface area and average pore size of the microspheres were 34.58m2/g and 17.80 nm, respectively. As a drug carrier, the kinetic investigation of doxorubicin (DOX) loaded shows that the adsorbed behavior of drug on the adsorbent is more suitable to be described with pseudo-first-order model. Furthermore, the release rate can reach 83% at pH 5.7, which is greater than the release of 39% at pH 7.4, indicating an excellent performance of controlled drug release for response pH. The release mechanism of DOX coincides with Fickian diffusion as a result of Korsmeyer-Peppas model analysis and the release phenomena can be well explained by Fickian diffusion second law.


2014 ◽  
Vol 2 (01) ◽  
pp. 68-75 ◽  
Author(s):  
Swapnil J. Kodalkar ◽  
Rohan A. Khutale ◽  
Sachin S. Salunkhe ◽  
Sachin S. Mali ◽  
Sameer J. Nadaf

In present study, the attempts have been made to formulate sustained release tablets of lornoxicam by direct compression method. Based on viscosity grades different proportions of hydrophilic polymers (HPMC K4M, HPMC K15M, HPMC K100M) are used for preparation of lornoxicam sustained release matrix tablet. The drug excipient mixtures were subjected to preformulation studies comprising of micromeritic properties. The tablets were subjected to various studies like as physicochemical studies, in vitro drug release, kinetic studies, etc. FTIR studies shown there was no interaction between drug and polymers. The physicochemical properties of tablets were found within the limits. Lornoxicam is a first generation analgesic, inflammatory and antipyretic agent used in relieving symptoms of osteoarthritis, rheumatoid arthritis, ankylosing spondylitis, acute sciatica and low back pain. From developed formulations batch F1 have shown zero order drug release behavior and prolong drug release over a period of 12 h which was deemed as suitable and optimum formulation for sustained drug delivery. Results of the present study indicated the suitability of the low viscous polymer in the proportion of (drug:polymer) 1:1 in the preparation of sustained release formulation of lornoxicam.


Author(s):  
Robert J. Thomas ◽  
Rebecca L. Vincelette ◽  
Gavin D. Buffington ◽  
Amber D. Strunk ◽  
Michael A. Edwards ◽  
...  

1992 ◽  
Vol 57 (9) ◽  
pp. 1951-1959 ◽  
Author(s):  
Madlene L. Iskander ◽  
Samia A. El-Abbady ◽  
Alyaa A. Shalaby ◽  
Ahmed H. Moustafa

The reactivity of the base induced cyclodimerization of 1-(6-arylpyridazin-3-yl)-3-oxidopyridinium chlorides in a pericyclic process have been investigated kinetically at λ 380 nm. The reaction was found to be second order with respect to the liberated betaine and zero order with respect to the base. On the other hand dedimerization (monomer formation) was found to be first order. It was shown that dimerization is favoured at low temperature, whereas dedimerization process is favoured at relatively high temperature (ca 70 °C). Solvent effects on the reaction rate have been found to follow the order ethanol > chloroform ≈ 1,2-dichloroethane. Complete dissociation was accomplished only in 1,2-dichloroethane at ca 70 °C. The thermodynamic activation parameters have been calculated by a standard method. Thus, ∆G# has been found to be independent on substituents and solvents. The high negative values of ∆S# supports the cyclic transition state which is in favour with the concerted mechanism. MO calculations using SCF-PPP approximation method indicated low HOMO-LUMO energy gap of the investigated betaines.


1997 ◽  
Vol 36 (5) ◽  
pp. 317-324 ◽  
Author(s):  
M.J. Rodriguez ◽  
J.R. West ◽  
J. Powell ◽  
J.B. Sérodes

Increasingly, those who work in the field of drinking water have demonstrated an interest in developing models for evolution of water quality from the treatment plant to the consumer's tap. To date, most of the modelling efforts have been focused on residual chlorine as a key parameter of quality within distribution systems. This paper presents the application of a conventional approach, the first order model, and the application of an emergent modelling approach, an artificial neural network (ANN) model, to simulate residual chlorine in a Severn Trent Water Ltd (U.K.) distribution system. The application of the first order model depends on the adequate estimation of the chlorine decay coefficient and the travel time within the system. The success of an ANN model depends on the use of representative data about factors which affect chlorine evolution in the system. Results demonstrate that ANN has a promising capacity for learning the dynamics of chlorine decay. The development of an ANN appears to be justifiable for disinfection control purposes, in cases when parameter estimation within the first order model is imprecise or difficult to obtain.


Sign in / Sign up

Export Citation Format

Share Document