scholarly journals A New Approach to Multi-objective Error Correcting Code Design Method

2008 ◽  
Vol 18 (5) ◽  
pp. 611-616
Author(s):  
Hee-Sung Lee ◽  
Eun-Tai Kim
2021 ◽  
Vol 11 (10) ◽  
pp. 4575
Author(s):  
Eduardo Fernández ◽  
Nelson Rangel-Valdez ◽  
Laura Cruz-Reyes ◽  
Claudia Gomez-Santillan

This paper addresses group multi-objective optimization under a new perspective. For each point in the feasible decision set, satisfaction or dissatisfaction from each group member is determined by a multi-criteria ordinal classification approach, based on comparing solutions with a limiting boundary between classes “unsatisfactory” and “satisfactory”. The whole group satisfaction can be maximized, finding solutions as close as possible to the ideal consensus. The group moderator is in charge of making the final decision, finding the best compromise between the collective satisfaction and dissatisfaction. Imperfect information on values of objective functions, required and available resources, and decision model parameters are handled by using interval numbers. Two different kinds of multi-criteria decision models are considered: (i) an interval outranking approach and (ii) an interval weighted-sum value function. The proposal is more general than other approaches to group multi-objective optimization since (a) some (even all) objective values may be not the same for different DMs; (b) each group member may consider their own set of objective functions and constraints; (c) objective values may be imprecise or uncertain; (d) imperfect information on resources availability and requirements may be handled; (e) each group member may have their own perception about the availability of resources and the requirement of resources per activity. An important application of the new approach is collective multi-objective project portfolio optimization. This is illustrated by solving a real size group many-objective project portfolio optimization problem using evolutionary computation tools.


2021 ◽  
Vol 13 (4) ◽  
pp. 1929
Author(s):  
Yongmao Xiao ◽  
Wei Yan ◽  
Ruping Wang ◽  
Zhigang Jiang ◽  
Ying Liu

The optimization of blank design is the key to the implementation of a green innovation strategy. The process of blank design determines more than 80% of resource consumption and environmental emissions during the blank processing. Unfortunately, the traditional blank design method based on function and quality is not suitable for today’s sustainable development concept. In order to solve this problem, a research method of blank design optimization based on a low-carbon and low-cost process route optimization is proposed. Aiming at the processing characteristics of complex box type blank parts, the concept of the workstep element is proposed to represent the characteristics of machining parts, a low-carbon and low-cost multi-objective optimization model is established, and relevant constraints are set up. In addition, an intelligent generation algorithm of a working step chain is proposed, and combined with a particle swarm optimization algorithm to solve the optimization model. Finally, the feasibility and practicability of the method are verified by taking the processing of the blank of an emulsion box as an example. The data comparison shows that the comprehensive performance of the low-carbon and low-cost multi-objective optimization is the best, which meets the requirements of low-carbon processing, low-cost, and sustainable production.


Open Physics ◽  
2017 ◽  
Vol 15 (1) ◽  
pp. 954-958
Author(s):  
Yinjiang Li ◽  
Song Xiao ◽  
Paolo Di Barba ◽  
Mihai Rotaru ◽  
Jan K. Sykulski

AbstractThe paper introduces a new approach to kriging based multi-objective optimization by utilizing a local probability of improvement as the infill sampling criterion and the nearest neighbor check to ensure diversification and uniform distribution of Pareto fronts. The proposed method is computationally fast and linearly scalable to higher dimensions.


2019 ◽  
Vol 1 (1) ◽  
Author(s):  
Sergey Victorovich Ulyanov

A new approach to a circuit implementation design of quantum algorithm gates for quantum massive parallel fast computing realization is presented. The main attention is focused on the development of design method of fast quantum algorithm operators as superposition, entanglement and interference which are in general time-consuming operations due to the number of products that have to be performed. SW & HW support sophisticated toolkit of supercomputing accelerator of quantum algorithm simulation is described. As example, the method for performing Grover’s interference without product operations introduced. The background of developed information technology is the "Quantum / Soft Computing Optimizer" (QSCOptKBTM) software based on soft and quantum computational intelligence toolkit. 


2010 ◽  
Vol 97-101 ◽  
pp. 3731-3736
Author(s):  
Pei Gang Li ◽  
Xian Ying Feng ◽  
Xiao Xia Shen ◽  
Cheng Liang Zhang

The mechanical product concept design method based on reverse engineering (RE) is a new approach in the concept design domain. The functional pattern is thought as an effective carrier and medium of mapping function to structure, which provides an efficient path for expressing the intrinsic evolution rule of the complex mechanical qualitative structure. And it is used as the information organization unit and the assembly product information model, which could give some help to express the design knowledge effectively. Therefore, we proposed a mechanical product concept design method based on RE. The examples indicated that this method is feasible and it provides a practical technical way for the knowledge reuse and continue innovation of the existence products.


Author(s):  
Andrew J. Robison ◽  
Andrea Vacca

A gerotor gear generation algorithm has been developed that evaluates key performance objective functions to be minimized or maximized, and then an optimization algorithm is applied to determine the best design. Because of their popularity, circular-toothed gerotors are the focus of this study, and future work can extend this procedure to other gear forms. Parametric equations defining the circular-toothed gear set have been derived and implemented. Two objective functions were used in this kinematic optimization: maximize the ratio of displacement to pump radius, which is a measure of compactness, and minimize the kinematic flow ripple, which can have a negative effect on system dynamics and could be a major source of noise. Designs were constrained to ensure drivability, so the need for additional synchronization gearing is eliminated. The NSGA-II genetic algorithm was then applied to the gear generation algorithm in modeFRONTIER, a commercial software that integrates multi-objective optimization with third-party engineering software. A clear Pareto front was identified, and a multi-criteria decision-making genetic algorithm was used to select three optimal designs with varying priorities of compactness vs low flow variation. In addition, three pumps used in industry were scaled and evaluated with the gear generation algorithm for comparison. The scaled industry pumps were all close to the Pareto curve, but the optimized designs offer a slight kinematic advantage, which demonstrates the usefulness of the proposed gerotor design method.


Author(s):  
Luying Zhang ◽  
Gabriel Davila ◽  
Mehrdad Zangeneh

Abstract This paper presents three different multi-objective optimization strategies for a high specific speed centrifugal volute pump design. The objectives of the optimization consist of maximizing the efficiency and minimizing the cavitation while maintaining the Euler head. The first two optimization strategies use a 3D inverse design method to parametrize the blade geometry. Both meridional shape and 3D blade geometry is changed during the optimization. In the first approach Design of Experiment method is used and the efficiency computed from CFD computations, while cavitation is evaluated by using minimum pressure on blade surface predicted by 3D inverse design method. The design matrix is then used to create a surrogate model where optimization is run to find the best tradeoff between cavitation and efficiency. This optimized geometry is manufactured and tested and is found to be 3.9% more efficient than the baseline with little cavitation at high flow. In the second approach the 3D inverse design method output is used to compute the efficiency and cavitation parameters and this leads to considerable reduction to the computational time. The resulting optimized geometry is found to be similar to the more computationally expensive solution based on 3D CFD results. In order to compare the inverse design based optimization to the conventional optimization an equivalent optimization is carried out by parametrizing the blade angle and meridional shape. Two different approaches are used for conventional optimization one in which the blade angle at TE is not constrained and one in which blade angles are constrained. In both cases larger variation in head is obtained when compared with the inverse design approach. This makes it impossible to create an accurate surrogate model. Furthermore, the efficiency levels in the conventional optimization is generally lower than the inverse design based optimization.


Sign in / Sign up

Export Citation Format

Share Document