scholarly journals The Medicinal Timber Canarium patentinervium Miq. (Burseraceae Kunth.) Is an Anti-Inflammatory Bioresource of Dual Inhibitors of Cyclooxygenase (COX) and 5-Lipoxygenase (5-LOX)

2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
R. Mogana ◽  
K. Teng-Jin ◽  
C. Wiart

The barks and leaves extracts of Canarium patentinervium Miq. (Burseraceae Kunth.) were investigated for cyclooxygenase (COX) and 5-lipoxygenase (LOX) inhibition via in vitro models. The corresponding antioxidative power of the plant extract was also tested via nonenzyme and enzyme in vitro assays. The ethanolic extract of leaves inhibited the enzymatic activity of 5-LOX, COX-1, and COX-2 with IC50 equal to 49.66±0.02 μg/mL, 0.60±0.01 μg/mL, and 1.07±0.01 μg/mL, respectively, with selective COX-2 activity noted in ethanolic extract of barks with COX-1/COX-2 ratio of 1.22. The ethanol extract of barks confronted oxidation in the ABTS, DPPH, and FRAP assay with EC50 values equal to 0.93±0.01 μg/mL, 2.33±0.02 μg/mL, and 67.00±0.32 μg/mL, respectively, while the ethanol extract of leaves confronted oxidation in β-carotene bleaching assay and superoxide dismutase (SOD) assay with EC50 value of 6.04±0.02 μg/mL and IC50 value of 3.05±0.01 μg/mL. The ethanol extract acts as a dual inhibitor of LOX and COX enzymes with potent antioxidant capacity. The clinical significance of these data is quite clear that they support a role for Canarium patentinervium Miq. (Burseraceae Kunth.) as a source of lead compounds in the management of inflammatory diseases.

Author(s):  
Monika Gaba ◽  
Sarbjot Singh ◽  
Chander Mohan ◽  
Richa Dhingra ◽  
Monika Chauhan ◽  
...  

Background: Non-steroidal anti-inflammatory drugs (NSAIDs) derived local generation of reactive oxygen species (ROS) plays a crucial role in the formation of gastric ulceration. Objective: Therefore, anti-inflammatory analgesics with potent antioxidant activity could be a potential therapeutic strategy for the treatment of pain and inflammatory disorders without gastrointestinal (GI) side effects. Methods: In an effort to develop gastroprotective analgesic and anti-inflammatory agents, a series of 2-methylamino-substituted-1H-benzo[d] imidazol-1-yl) (phenyl) methanone derivatives were synthesized and evaluated in vitro for cyclooxygenase (COX) inhibition as well as anti-oxidant potential by the FRAP assay. The compounds with significant in vitro COX-1/COX-2 inhibitory activity and antioxidant activity were further screened in vivo for their anti-inflammatory and analgesic activities. Moreover, the ulcerogenic potential of test compounds was also studied. To gain insight into the plausible mode of interaction of compounds within the active sites of COX-1 and COX-2, molecular docking simulations were performed. Results: Among the various synthesized molecules, most of the compounds showed good cyclooxygenase inhibitory activity and efficient antioxidant activity in FRAP assay. After preliminary and indicative in vitro assays, three compounds exhibited most significant antiinflammatory and analgesic activity with better gastric tolerability during their in vivo evaluation. Ligand interaction studies indicated highest dock score -43.05 of 1,2- disubstituted benzimidazole derivatives in comparison to the reference ligand -30.70. Overall studies provided us (2-((4-methoxyphenylamino) methyl) -1h-benzo [d] imidazol- 1-yl) (phenyl) methanone as a lead with potent gastro-protective anti-inflammatory and analgesic activities that can be used for future research. Conclusion: From the above results, it can be concluded that designing of multifunctional molecules with COX-1/COX-2 inhibitory and anti-oxidant activities could hold a great promise for further development of GI-safer NSAIDs.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Ha Thi Nguyen ◽  
Thien-Y. Vu ◽  
Vishala Chandi ◽  
Haritha Polimati ◽  
Vinay Bharadwaj Tatipamula

Abstract Natural metabolites with their specific bioactivities are being considered as a potential source of materials for pharmacological studies. In this study, we successfully isolated and identified five known clerodane diterpenes, namely 16-oxo-cleroda-3,13(14)E-dien-15-oic acid (1), 16-hydroxy-cleroda-3,13-dien-15-oic acid (2), 16-hydroxy-cleroda-4(18),13-dien-16,15-olide (3), 3α,16α-dihydroxy-cleroda-4(18),13(14)Z-dien-15,16-olide (4), and 16α-hydroxy-cleroda-3,13(14)Z-dien-15,16-olide (5) from the methanolic extract of seeds of Polyalthia longifolia. Initially, all the isolated metabolites were investigated for COX-1, COX-2, and 5-LOX inhibitory activities using the standard inhibitory kits. Of which, compounds 3, 4, and 5 exhibited to be potent COX-1, COX-2, and 5-LOX inhibitors with the IC50 values similar or lower to those of the reference drugs. To understand the underlying mechanism, these compounds were subjected to molecular docking on COX-1, COX-2, and 5-LOX proteins. Interestingly, the in silico study results were in high accordance with in vitro studies where compounds 3, 4, and 5 hits assumed interactions and binding pattern comparable to that of reference drugs (indomethacin and diclofenac), as a co-crystallized ligand explaining their remarkable dual (COX/LOX) inhibitor actions. Taken together, our findings demonstrated that compounds 3, 4, and 5 functioned as dual inhibitors of COX/5-LOX and can contribute to the development of novel, more effective anti-inflammatory drugs with minimal side-effects.


2012 ◽  
Vol 44 (1) ◽  
pp. 51-66 ◽  
Author(s):  
Nunung Yuniarti ◽  
Perdana Adhi Nugroho ◽  
Aditya Asyhar ◽  
Sardjiman Sardjiman ◽  
Zullies Ikawati ◽  
...  

Author(s):  
Hendra Sutapa ◽  
M Aris Widodo ◽  
Basuki Bambang Purnomo ◽  
Doddy M Soebadi ◽  
Edvin Prawira Negara

Introduction: Benign Prostatic Hyperplasia (BPH) is benign tumor in male which is histopathologically known with an increase of epithelial cells and prostatic stroma. Androgens, estrogens, stroma-epithelial interactions, growth factors, and chronic inflammation play a role in the occurrence of BPH. Chronic inflammation in BPH is characterized by excessive expression of COX-2 which will trigger the expression of Bcl-2 anti-apoptotic protein. Dayak onion (Eleutherine americana Merr) is a typical Kalimantan plant that is believed as the treatment for prostate disease. This plant contains flavonoids which can inhibit the COX-2 enzyme. Thus, it causes a reduction in the production of prostaglandin E2. Method: this research was an experimental research computationally and in vitro laboratory experimental research to determine COX-2 inhibitory activity by ethanol extracts of dayak onion. Result and Discussion: In insilico flavonoid, it was strongly related to COX-2 receptor on the active side of TYR371. Thus, it had the potential to inhibit COX-2. COX-2 Inhibitor would cause bcl-2 to be inactive so that apoptosis occurred in BPH. In the in vitro research using human whole blood assay, the Dayak Onion bulb ethanol extract had IC50 COX-2 of 40.57 ng/ml and IC50 COX-1 of 364.89 ng/ml. Therefore, the ratio of IC50 COX-2 to IC50 COX-1 was 0.11. Conclusion: ethanol extract of Dayak onion bulb has inhibitory activity against COX-2. Thus, it has potential as innovation of BPH treatment. Patient Summary: male, age 25-35 years old, healthy (history taking, physical and laboratory examination), and not using NSAIDs for the past 2 weeks.


2011 ◽  
Vol 83 (4) ◽  
pp. 1397-1402 ◽  
Author(s):  
Ericsson D. Coy-Barrera ◽  
Luis E. Cuca-Suarez

The in vitro anti-inflammatory effects of seven known lignans and one dihydrochalcone isolated from the leaves of two Lauraceae species (Pleurothyrium cinereum and Ocotea macrophylla), were evaluated through the inhibition of COX-1, COX-2, 5-LOX and the aggregation of rabbit platelets induced by PAF, AA and ADP. (+)-de-4"-O--methylmagnolin 4 was found to be a potent COX-2/5-LOX dual inhibitor and PAF-antagonist (COX-2 IC50 2.27 µM; 5-LOX IC50 5.05 µM; PAF IC50 2.51 µM). However, all compounds exhibited an activity at different levels, indicating good anti-inflammatory properties to be considered in further structural optimization studies.


2021 ◽  
Author(s):  
Samuel Kamatham ◽  
Naresh Babu V. Sepuri ◽  
Naresh Kumar

Abstract The transcription factor NF-κB regulates a large array of genes of immune and inflammatory responses. Deregulated NF-κB signalling is implicated in the pathogenesis and broad spectrum of human inflammatory disorders and malignancies. The mechanism for NF-κB activation is the inducible degradation of IκB, triggered through its site-specific phosphorylation by a multi-subunit IκB kinase (IKK) complex. Aspirin (acetylsalicylic acid) a well-known anti-inflammatory agent that binds to ATP binding pocket of IKKβ and inhibits its kinase activity. However, several side effects of aspirin due to the inactivation of COX-1 limits the therapeutic usage of ASA. Here we have demonstrate the effect of a plant phenolic compound benzoylsalicylic acid (BzSA) isolated first time in plants a potent anti-viral compound inhibits Tobacco mosaic virus (TMV) and enhance the plant defense response (Samuel et all 2016&2017) inhibit the IKKβ mediated NF-κB pathway higher than aspirin. Our In-vitro COX enzymatic assays with BzSA have shown less COX-1 and high COX-2 inhibition as compared to ASA. Western blotting analysis of Raw 264.7 cells that were pre-treated with BzSA down-regulated LPS stimulated pIKK-β, pIκB, NF-κBp65, TNF-α, COX-1, COX-2, 5-LOX, IL-1β, and IL-6 higher than ASA. Therefore, our observations suggested that the potencial therapeutic value of BzSA an upcoming new inhibitor of NF-KB pathway and the dual inhibitor of COX2/5-LOX without effecting the usefull COX-1. Hence useful as an anti-inflammatory agent like ASA.


Plants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1109
Author(s):  
Sakshi Bajaj ◽  
Shivkanya Fuloria ◽  
Vetriselvan Subramaniyan ◽  
Dhanalekshmi Unnikrishnan Meenakshi ◽  
Sharad Wakode ◽  
...  

Swertia alata C.B Clarke (Gentianaceae) is a well-reported plant in the traditional system of medicine. The present study was intended to isolate the phytoconstituents from the ethanolic extract of the aerial parts of S. alata; and evaluate for in vitro COX-1/COX-2 inhibition activity, in vivo anti-inflammatory and ulcerogenic activity. Phytoisolation involved partitioning of S. alata ethanolic extract into petroleum ether and chloroform soluble fractions using silica gel-based column chromatography. The isolation afforded two phytoisolates, namely oleanolic acid (SA-1) and 3-hydroxylup-12-(13)-ene-17-carboxylic acid (SA-4). Phytoisolates structures were established by melting point, ultraviolet (UV), attenuated total reflection-Fourier-transform infrared (ATR-FTIR), nuclear magnetic resonance (1H-NMR, 13C-NMR and HMBC) and mass spectrometry. Phytoisolates were further evaluated for in vitro cyclooxygenase (COX-1/COX-2) inhibitory activity, in vivo anti-inflammatory and ulcerogenic activity. The study revealed SA-4 (COX-1/COX-2 inhibition activity of 104/61.68 µM with % inhibition of 61.36) to be more effective than SA-1 (COX-1/COX-2 inhibition activity of 128.4/87.25 µM, with % inhibition of 47.72). SA-1 and SA-4, when subjected to ulcerogenic study, exhibited significant gastric tolerance. The current study reports chromatographic isolation and spectrometric characterization of SA-1 and SA-4. The present study concludes that compound SA-4 possess significant anti-inflammatory activity and less irritant property over gastric mucosa with no significant ulcerogenicity in comparison to indomethacin.


2020 ◽  
Vol 3 (1) ◽  
pp. 47
Author(s):  
Nadezhda Petkova ◽  
Manol Ognyanov ◽  
Blaga Inyutin ◽  
Petar Zhelev ◽  
Panteley Denev

Crab apple (Malus baccata (L.) Borkh.) was mainly distributed in Europe as an ornamental plant, but the nutritional properties of its edible fruits were not fully revealed. The aim of the current study was to characterize the phytochemical composition of ripen carb apple fruits and to evaluate their nutritional and antioxidant potentials. The fruits were assayed for moisture and ash content, proteins, lipids, carbohydrates, titratable acidity (TA), pH, total phenolic compounds and natural pigments. Among the analyzed carbohydrates cellulose was found in the highest content (6% dw), followed by sugars (sucrose, glucose and fructose) and 1.8 % dw uronic acids. The total chlorophylls and carotenoids contents in their fruits were 6.51 and 4.80 μg/g fw, respectively. Total monomeric anthocyanins were not detected. The highest content of total phenolic compounds (2.67 mg GAE/g fw) was found in 95 % ethanol extract from fruits, while the total flavonoids were relatively low – 0.1 mg QE/g fw. DPPH assay (17.27 mM TE/g fw) and FRAP assay (14.34 mM TE/g fw) demonstrated in vitro antioxidant activities of crabapple. Malus baccata fruits were evaluated as a rich source of dietary fibers and phenolic compounds with significant antioxidant potential that could be used in human nutrition.


2016 ◽  
Vol 5 (04) ◽  
pp. 4512
Author(s):  
Jackie K. Obey ◽  
Anthoney Swamy T* ◽  
Lasiti Timothy ◽  
Makani Rachel

The determination of the antibacterial activity (zone of inhibition) and minimum inhibitory concentration of medicinal plants a crucial step in drug development. In this study, the antibacterial activity and minimum inhibitory concentration of the ethanol extract of Myrsine africana were determined for Escherichia coli, Bacillus cereus, Staphylococcus epidermidis and Streptococcus pneumoniae. The zones of inhibition (mm±S.E) of 500mg/ml of M. africana ethanol extract were 22.00± 0.00 for E. coli,20.33 ±0.33 for B. cereus,25.00± 0.00 for S. epidermidis and 18. 17±0.17 for S. pneumoniae. The minimum inhibitory concentration(MIC) is the minimum dose required to inhibit growth a microorganism. Upon further double dilution of the 500mg/ml of M. africana extract, MIC was obtained for each organism. The MIC for E. coli, B. cereus, S. epidermidis and S. pneumoniae were 7.81mg/ml, 7.81mg/ml, 15.63mg/ml and 15.63mg/ml respectively. Crude extracts are considered active when they inhibit microorganisms with zones of inhibition of 8mm and above. Therefore, this study has shown that the ethanol extract of M. africana can control the growth of the four organisms tested.


2018 ◽  
Vol 19 (1) ◽  
pp. 23
Author(s):  
Muhammad Thohawi Elziyad Purnama ◽  
Ragil Angga Prastiya ◽  
Faisal Fikri ◽  
Amung Logam Saputro ◽  
Bodhi Agustono

Cancer caused uncontrolled cell proliferation and triggered by changes on cell information that regulate growth function. Each cell has different potential so many cancer prevalence such as endometrial cancer, lymph node cancer, lung cancer, skin and mammary gland cancer. The aims of this study were to assess the potential of dragon fruit skin ethanolic extract on white rats (Rattus norvegicus) exposed 7,12- Dimethylbenz(á)antrasena (DMBA) on mammary gland based on histopathological features and cyclooxygenase-2 (Cox-2) intensity. This study were used 20 of rats randomly divided into five group and each groups consisted of four rats, i.e: K+ weren’t treated DMBA and extract; K- were treated with DMBA; P1 were treated with DMBA and extract 10 mg/kg BW; P2 were treated with DMBA and extract 15 mg/kg BW; P3 were treated with DMBA and extract 20 mg/kg BW. The DMBA was given by intra dermal injection during twice a week for five weeks and the extracts with gastric tube everyday till 14 days. The data was analyzed by Anova test and continued with Duncan test. The result showed that the histopathological features were decrease significantly on P3. The variables of Cox-2 intensity were decrease significantly on P1, P2 and P3. Conclusion of this study was ethanol extract of dragon fruit skin can decrease neoplastic indication of mammary gland on white rats (R. norvegicus) based on histopathological features and Cox-2 inhibitors.


Sign in / Sign up

Export Citation Format

Share Document