scholarly journals Determination of Nicotine in Libyan Smokers' Urine Compared with that of Nonsmokers using Reversed Phase – High Performance Liquid Chromatog-raphy (RP-HPLC)

2019 ◽  
Vol 34 (3) ◽  
pp. 172-180
Author(s):  
Galal Elmanfe ◽  
Suad K. Omar ◽  
Noreldin S.Y. Abdolla ◽  
Amna M. Hassan

The aim of the present study was to evaluate the levels of nicotine in twenty urine samples taken from ten smokers and ten non-smokers in Libya. Each volunteer was required to complete a questionnaire before providing the urine sample. The evaluation of the nicotine concentrations was carried out by means of a simple, rapid, cost effective but reliable, one-step extraction technique-reversed-phase high-performance liquid chromatography which was developed and validated for this purpose. The criteria and factors taken into consideration for this evaluation and validation include the linearity, precision, accuracy, limit of detection, and limit of quantitation. The urine samples from the smokers presented nicotine concentrations in the range of 0.037-1.979 µg/ml, with an average of 0.663 µg/ml. The range of the nicotine concentrations in non-smokers, on the other hand, was from 0.017-1.331 g/ml, where 0.273 µg/ml is the average value. Statistical analyses show that the nicotine concentrations were very significant in the smoker samples in contrast with the nonsmoker samples

2021 ◽  
Vol 11 (2) ◽  
pp. 153-163
Author(s):  
Abhiram Dash ◽  
Neelu Jain ◽  
Harish Pandey

The objective of this research was to develop and validate a simple, specific and accurate reverse phase of high performance of liquid chromatographic method for the determination of levonorgestrel (LVG) and ethinylestradiol (EE) in tablets. The chromatographic system included column Sun Fire ODS (150 mm × 4.6 mm i.d., particle size at 5 μm), mobile phase consisting of acetonitrile: methanol: aquabidest (60:15:25) with the flow rate of 1 mL/minute and effluents monitored at 230 nm. The validation of RP HPLC method for the simultaneous determination of LVG and EE was determined by accuracy, precision, linearity, and limit of detection (LOD) as well as the limit of quantitation (LOQ) parameters. The linearity range of both drugs was 1-70 µg/mL and 2-14 µg/mL for LVG and EE, respectively. The recoveries of LVG and EE were at 101.78% and 102.44% with the coefficients of variation of 0.94% and 1.92%, successively. The LOD of LVG and EE value were of 0.84 µg/mL and 0.03 µg/mL, and LOQ value were of 2.79 and 0.09µg/mL, respectively. Keywords: Levonorgestrel (LVG), Ethinylestradiol, Method Validation, Method Validation, HPLC


2009 ◽  
Vol 92 (3) ◽  
pp. 773-778 ◽  
Author(s):  
Juan Chen ◽  
Xue-Mei Ma ◽  
Yan-Ping Shi

Abstract A high-performance liquid chromatographic technique coupled with photodiode array detection was proposed for the simultaneous determination of 7 flavonoids, i.e., quercetin, kaempferol, 7-hydroxyflavanone, 7-methoxyflavanone, 2,4-dihydroxychalcone, 2,4-dihydroxydihydrochalcone, and 7,2-dihydroxy-3, 4-dimethoxyisoflavane, in extracts of the plant Ixeridium gracile. Optimum separation was obtained by using a reversed-phase C18 method. Because of the different UV characteristics of these components, 5 detection wavelengths were used for the quantitative analysis. All of the flavonoids showed good linearity (r > 0.9999). The limit of detection and limit of quantitation values for the analytes ranged from 0.06 to 0.46 g/mL and from 0.18 to 1.48 g/mL, respectively. The method was validated by evaluating repeatability, precision, stability, and accuracy. Five different extraction and purification procedures were investigated for preparation of the sample solution. The optimized method was applied to the determination of flavonoids in I. gracile and was found to be efficient.


2019 ◽  
Vol 31 (5) ◽  
pp. 1002-1008
Author(s):  
Somana Siva Prasad ◽  
G.V. Krishna Mohan ◽  
A. Naga Babu

A novel reversed-phase high performance liquid chromatographic (HPLC) technique for the determination of everolimus (Isomer-B) and its impurities in the tablet dosage form has been optimized using analytical quality by design (QbD) approach. All the compounds are monitored with the photodiode array (PDA) detector at 280 nm and the parameters namely; precision, accuracy, specificity, stability, linearity, limit of quantitation (LOQ) and limit of detection (LOD) are evaluated. The quantitation limits of IMP-A, IMP-B, IMP-C, IMP-D, IMP-E, Sirolimus and TGR are found to be 0.08, 0.08, 0.10, 0.10, 0.10, 0.08 and 0.08, respectively. Recovery studies from 0.9 mg/L to 9.0 mg/L are performed for all impurities and the values were obtained between 85-110 %. Injection volume and test concentrations have been optimized to achieve LOQ values under the reporting threshold. The whole technique is developed and validated as per International Council for Harmonization (ICH) guidelines. The proposed method is robust, sensitive, rapid and successful and helpful in the regions where regulatory agencies recommend HPLC analytical method.


2021 ◽  
Vol 9 (2) ◽  
Author(s):  
Darinka Brodnjak Vončina ◽  
Maša Islamčivic Razboršek ◽  
Marjana Simonič

The aim of this study was to develop a method for identification and quantification of phenolic acids in different wine samples. The simple reversed-phase HPLC-UV method for simultaneous determination of p-coumaric and ferulic acid was developed. The method was validated and working range, linearity, repeatability, accuracy, limit of quantitation LOQ and limit of detection LOD were determined. The linearity of the method was tested in concentration ranges 0.1-1 mg L-1 and 1-10 mg L-1. The correlation coefficients (r2) were greater than 0.996 and quality coefficients (QC) ≤ 5%. Detection limit for both compounds was 0.01 mg L-1. The method is precise (RSD


Author(s):  
Dilshad Ahmad ◽  
Faisal A. Al Meshaiti ◽  
Yazeed K. Al Anazi ◽  
Osama Al Owassil ◽  
Alaa Eldeen B. Yassin

Anastrozole, an aromatase inhibitor drug, is used for the treatment of breast cancer in pre- and postmenopausal women. Anastrozole’s incorporation into nanoparticulate carriers would enhance its therapeutic performance. To perceive the exact loaded amount of drug in nanocarriers, a valid analytical method is required. The reversed-phase high-performance liquid chromatography (RP-HPLC) method was developed and validated by using the C18 column, 150 × 4.6 mm, 5 µm particle size, in isocratic mobile phase composed of 50:50 V/V (volume/volume) acetonitrile–phosphate buffer (pH 3) flowing at a rate of 1.0 mL/min, and a diode array detector (DAD) set at λmax = 215 nm. The validation parameters such as linearity, accuracy, specificity, precision, and robustness have proven the accuracy of the method, with the relative standard deviation percentage (% RSD) values < 2. The limit of detection of the method was found equal to 0.0150 µg/mL, and the limit of quantitation was 0.0607 µg/mL. The percent recovery of sample was in the range of 98.04–99.25%. The method has the advantage of being rapid with a drug retention time of 2.767 min, specific in terms of resolution of peaks void of interference with any of the excipients, and high reproducibility. This makes it highly applicable for quality control purposes.


2017 ◽  
Vol 20 (2) ◽  
pp. 241-249 ◽  
Author(s):  
A. Jasiecka-Mikołajczyk ◽  
J.J. Jaroszewski

Abstract Tigecycline (TIG), a novel glycylcycline antibiotic, plays an important role in the management of complicated skin and intra-abdominal infections. The available data lack any description of a method for determination of TIG in avian plasma. In our study, a selective, accurate and reversed-phase high performance liquid chromatography-tandem mass spectrometry method was developed for the determination of TIG in turkey plasma. Sample preparation was based on protein precipitation and liquid-liquid extraction using 1,2-dichloroethane. Chromatographic separation of TIG and minocycline (internal standard, IS) was achieved on an Atlantis T3 column (150 mm × 3.0 mm, 3.0 μm) using gradient elution. The selected reaction monitoring transitions were performed at 293.60 m/z → 257.10 m/z for TIG and 458.00 m/z → 441.20 m/z for IS. The developed method was validated in terms of specificity, selectivity, linearity, lowest limit of quantification, limit of detection, precision, accuracy, matrix effect, carry-over effect, extraction recovery and stability. All parameters of the method submitted to validation met the acceptance criteria. The assay was linear over the concentration range of 0.01-100 μg/ml. This validated method was successfully applied to a TIG pharmacokinetic study in turkey after intravenous and oral administration at a dose of 10 mg/kg at various time-points.


2017 ◽  
Vol 9 (2) ◽  
pp. 34
Author(s):  
N. Balaji ◽  
Sayeeda Sultana

Objective: An efficient, high performance liquid chromatographic method has been developed and validated for the quantification of related substances in pioglitazone hydrochloride drug substance.Methods: This method includes the determination of three related substances in pioglitazone hydrochloride. The mobile phase A is 0.1% w/v triethylamine in water with pH 2.5 adjusted by dilute phosphoric acid. The mobile phase B is premixed and degassed mixtures of acetonitrile and methanol. The flow rate was 1 ml/min. The elution used was gradient mode. The HPLC column used for the analysis was symmetry C18 with a length of 250 mm, the internal diameter of 4.6 mm and particle size of 5.0 microns.Results: The developed method was found to be linear with the range of 0.006-250% with a coefficient of correlation 0.99. The precision study revealed that the percentage relative standard deviation was within the acceptable limit. The limit of detection and limit of quantitation of the impurities was less than 0.002%and 0.006% with respect to pioglitazone hydrochloride test concentration of 2000 µg/ml respectively. This method has been validated as per ICH guidelines Q2 (R1).Conclusion: A reliable, economical HPLC method was magnificently established for quantitative analysis of related substances of pioglitazone hydrochloride drug substance.


Author(s):  
Muhammad Fawad Rasool ◽  
Umbreen Fatima Qureshi ◽  
Nazar Muhammad Ranjha ◽  
Imran Imran ◽  
Mouqadus Un Nisa ◽  
...  

AbstractTh accurate rapid, simple and selective reversed phase high performance liquid chromatography (RP-HPLC) has been established and validated for the determination of captopril (CAP). Chromatographic separation was accomplished using prepacked ODSI C18 column (250 mm × 4.6 mm with 5 μm particle size) in isocratic mode, with mobile phase consisting of water: acetonitrile (60:40 v/v), pH adjusted to 2.5 by using 85% orthophosphoric acid at a flow rate of 1 mL/min and UV detection was performed at 203 nm. RP-HPLC method used for the analysis of CAP in mobile phase and rabbit plasma was established and validated as per ICH-guidelines. It was carried out on a well-defined chromatographic peak of CAP was established with a retention time of 4.9 min and tailing factor of 1.871. The liquid–liquid extraction method was used for extraction of CAP from the plasma. Excellent linearity (R2 = 0.999) was shown over range 3.125–100 µg/mL with mean percentage recoveries ranges from 97 to 100.6%. Parameters of precision and accuracy of the developed method meet the established criteria. Intra and inter-day precision (% relative standard deviation) study was also performed which was less than 2% which indicate good reproducibility of the method. The limit of detection (LOD) and quantification for the CAP in plasma were 3.10 and 9.13 ng/mL respectively. The method was suitably validated and successfully applied to the determination of CAP in rabbit plasma samples.


2012 ◽  
Vol 1 (12) ◽  
pp. 410-413 ◽  
Author(s):  
Sukhbir Lal Khokra ◽  
Balram Choudhary ◽  
Heena Mehta

A rapid, simple and highly sensitive reversed phase high performance liquid chromatographic (RP-HPLC) method has been developed for the quantitative determination of Rabeprazole sodium and Aceclofenac in a combined dosage form. Rabeprazole sodium and Aceclofenac were chromatographed using C-18 column as stationary phase and methanol: acetonitrile: water (60 : 10 : 30 v/v/v) as the mobile phase at a flow rate of 1.0 ml/min at ambient temperature and detected at 280 nm. The retention time (RT) of Rabeprazole sodium and Aceclofenac were found to be 5.611 min and 2.102 minute, respectively. The linearities of Rabeprazole sodium and Aceclofenac were in the range of 1-10 µg/ml and 3-15 µg/ml, respectively. The limit of detection was found to be 0.091 µg/ml for Rabeprazole sodium and 0.043 µg/ml for Aceclofenac. The proposed method was applied for the determination of Rabeprazole sodium and Aceclofenac in a combined dosage form and result was found satisfactory.DOI: http://dx.doi.org/10.3329/icpj.v1i12.12450 International Current Pharmaceutical Journal 2012, 1(12): 410-413


Author(s):  
Sagar B. Wankhede ◽  
Deepak S. Khobragade ◽  
Sukeshini B. Lote ◽  
S. Patil

A combined dose tablet formulation containing Amlodipine besylate and Lisinopril is used for the treatment of essential hypertension. The present study reports development and validation of stability indicating high performance thin layer chromatographic method for simultaneous estimation of these drugs in combined dose tablet formulation. The two drugs were satisfactorily resolved on aluminum plates precoated with silica gel 60F254 using n-butanol : methanol: ammonia (4:4:1 v/v/v) as mobile phase. The Rf value for lisinopril and amlodipine besylate were 0.27±0.02 and 0.62±0.02, respectively. Densitometric evaluation of the separated bands was performed at 215nm. The calibration curves for lisinopril and amlodipine besylate were found to be linear in the concentration range of 1000-6000ng/band. The method was validated as per ICH guidelines for accuracy, precision, robustness, specificity, limit of detection and limit of quantitation. Statistical analysis proves that the method is suitable for simultaneous analysis of Lisinopril and Amlodipine besylate in pharmaceutical formulation without any interference from the excipients/degradant. The developed method offers several advantages such as sensitive, rapid, cost effective and less time consuming as compared to the reported methods. As the method could effectively separate the drugs from its degradation products, it can be employed as a stability indicating method.


Sign in / Sign up

Export Citation Format

Share Document