Neutrosophic Soft Filter Structures Concerning Soft Points

Author(s):  
Naime Demirtas ◽  
◽  
Abdullah Demirtas ◽  

In this paper, the concept of neutrosophic soft filter (NSF) and its basic properties are introduced. Later, we set up a neutrosophic soft topology with the help of an NSF. We also give the notions of the greatest lower bound and the least upper bound of the family of neutrosophic soft filters (NSFs), NSF subbase, NSF base and explore some basic properties of them.

1974 ◽  
Vol 26 (02) ◽  
pp. 388-404 ◽  
Author(s):  
W. J. Thron ◽  
R. H. Warren

Let (X, ) be a topological space. By we denote the family of all Lodato proximities on X which induce . We show that is a complete distributive lattice under set inclusion as ordering. Greatest lower bound and least upper bound are characterized. A number of techniques for constructing elements of are developed. By means of one of these constructions, all covers of any member of can be obtained. Several examples are given which relate to the lattice of all compatible proximities of Čech and the family of all compatible proximities of Efremovič. The paper concludes with a chart which summarizes many of the structural properties of , and .


Mathematics ◽  
2021 ◽  
Vol 9 (22) ◽  
pp. 2860
Author(s):  
Gonzalo Grisalde ◽  
Enrique Reyes ◽  
Rafael H. Villarreal

We give a formula for the v-number of a graded ideal that can be used to compute this number. Then, we show that for the edge ideal I(G) of a graph G, the induced matching number of G is an upper bound for the v-number of I(G) when G is very well-covered, or G has a simplicial partition, or G is well-covered connected and contains neither four, nor five cycles. In all these cases, the v-number of I(G) is a lower bound for the regularity of the edge ring of G. We classify when the induced matching number of G is an upper bound for the v-number of I(G) when G is a cycle and classify when all vertices of a graph are shedding vertices to gain insight into the family of W2-graphs.


Author(s):  
Sellami Ali

We have presented a method to estimate parameters of the decoy state protocol based on one decoy state protocol for both BB84 and SARG04. This method can give different lower bound of the fraction of single-photon counts (y1), the fraction of two-photon counts (y2), the upper bound QBER of single-photon pulses (e1), the upper bound QBER of two-photon pulses (e2), and the lower bound of key generation rate for both BB84 and SARG04. The effects of statistical fluctuations on some parameters of our QKD system have been presented. We have also performed the optimization on the choice of intensities and percentages of signal state and decoy states which give out the maximum distance and the optimization of the key generation rate. The numerical simulation has shown that the fiber based QKD and free space QKD systems using the proposed method for BB84 are able to achieve both a higher secret key rate and greater secure distance than that of SARG04. Also, it is shown that bidirectional ground to satellite and inter-satellite communications are possible with our protocol. The experiment of decoy state QKD has been demonstrated using ID-3000 commercial QKD system based on a standard ‘Plug & Play’ set-up. One decoy state QKD has been implemented for both BB84 and SARG04 over different transmission distance of standard telecom fiber.


2011 ◽  
Vol 20 (4) ◽  
pp. 571-608 ◽  
Author(s):  
GYÖRGY ELEKES ◽  
MICHA SHARIR

We first describe a reduction from the problem of lower-bounding the number of distinct distances determined by a set S of s points in the plane to an incidence problem between points and a certain class of helices (or parabolas) in three dimensions. We offer conjectures involving the new set-up, but are still unable to fully resolve them.Instead, we adapt the recent new algebraic analysis technique of Guth and Katz [9], as further developed by Elekes, Kaplan and Sharir [6], to obtain sharp bounds on the number of incidences between these helices or parabolas and points in ℝ3. Applying these bounds, we obtain, among several other results, the upper bound O(s3) on the number of rotations (rigid motions) which map (at least) three points of S to three other points of S. In fact, we show that the number of such rotations which map at least k ≥ 3 points of S to k other points of S is close to O(s3/k12/7).One of our unresolved conjectures is that this number is O(s3/k2), for k ≥ 2. If true, it would imply the lower bound Ω(s/logs) on the number of distinct distances in the plane.


1998 ◽  
Vol 58 (1) ◽  
pp. 1-13 ◽  
Author(s):  
Shiqing Zhang

Using the equivariant Ljusternik-Schnirelmann theory and the estimate of the upper bound of the critical value and lower bound for the collision solutions, we obtain some new results in the large concerning multiple geometrically distinct periodic solutions of fixed energy for a class of planar N-body type problems.


2016 ◽  
Vol 26 (12) ◽  
pp. 1650204 ◽  
Author(s):  
Jihua Yang ◽  
Liqin Zhao

This paper deals with the limit cycle bifurcations for piecewise smooth Hamiltonian systems. By using the first order Melnikov function of piecewise near-Hamiltonian systems given in [Liu & Han, 2010], we give a lower bound and an upper bound of the number of limit cycles that bifurcate from the period annulus between the center and the generalized eye-figure loop up to the first order of Melnikov function.


Author(s):  
E. S. Barnes

Letbe n linear forms with real coefficients and determinant Δ = ∥ aij∥ ≠ 0; and denote by M(X) the lower bound of | X1X2 … Xn| over all integer sets (u) ≠ (0). It is well known that γn, the upper bound of M(X)/|Δ| over all sets of forms Xi, is finite, and the value of γn has been determined when n = 2 and n = 3.


2010 ◽  
Vol 47 (03) ◽  
pp. 611-629
Author(s):  
Mark Fackrell ◽  
Qi-Ming He ◽  
Peter Taylor ◽  
Hanqin Zhang

This paper is concerned with properties of the algebraic degree of the Laplace-Stieltjes transform of phase-type (PH) distributions. The main problem of interest is: given a PH generator, how do we find the maximum and the minimum algebraic degrees of all irreducible PH representations with that PH generator? Based on the matrix exponential (ME) order of ME distributions and the spectral polynomial algorithm, a method for computing the algebraic degree of a PH distribution is developed. The maximum algebraic degree is identified explicitly. Using Perron-Frobenius theory of nonnegative matrices, a lower bound and an upper bound on the minimum algebraic degree are found, subject to some conditions. Explicit results are obtained for special cases.


Algorithmica ◽  
2021 ◽  
Author(s):  
Seungbum Jo ◽  
Rahul Lingala ◽  
Srinivasa Rao Satti

AbstractWe consider the problem of encoding two-dimensional arrays, whose elements come from a total order, for answering $${\text{Top-}}{k}$$ Top- k queries. The aim is to obtain encodings that use space close to the information-theoretic lower bound, which can be constructed efficiently. For an $$m \times n$$ m × n array, with $$m \le n$$ m ≤ n , we first propose an encoding for answering 1-sided $${\textsf {Top}}{\text {-}}k{}$$ Top - k queries, whose query range is restricted to $$[1 \dots m][1 \dots a]$$ [ 1 ⋯ m ] [ 1 ⋯ a ] , for $$1 \le a \le n$$ 1 ≤ a ≤ n . Next, we propose an encoding for answering for the general (4-sided) $${\textsf {Top}}{\text {-}}k{}$$ Top - k queries that takes $$(m\lg {{(k+1)n \atopwithdelims ()n}}+2nm(m-1)+o(n))$$ ( m lg ( k + 1 ) n n + 2 n m ( m - 1 ) + o ( n ) ) bits, which generalizes the joint Cartesian tree of Golin et al. [TCS 2016]. Compared with trivial $$O(nm\lg {n})$$ O ( n m lg n ) -bit encoding, our encoding takes less space when $$m = o(\lg {n})$$ m = o ( lg n ) . In addition to the upper bound results for the encodings, we also give lower bounds on encodings for answering 1 and 4-sided $${\textsf {Top}}{\text {-}}k{}$$ Top - k queries, which show that our upper bound results are almost optimal.


2015 ◽  
Vol 65 (4) ◽  
Author(s):  
Giovanna D’Agostino ◽  
Giacomo Lenzi

AbstractIn this paper we consider the alternation hierarchy of the modal μ-calculus over finite symmetric graphs and show that in this class the hierarchy is infinite. The μ-calculus over the symmetric class does not enjoy the finite model property, hence this result is not a trivial consequence of the strictness of the hierarchy over symmetric graphs. We also find a lower bound and an upper bound for the satisfiability problem of the μ-calculus over finite symmetric graphs.


Sign in / Sign up

Export Citation Format

Share Document