scholarly journals A portable instrument for determining soil temperatures

MAUSAM ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 199-202
Author(s):  
M. SALARUDDIN

A Portable instrument using thermocouples for measuring soil temperatures has been designed and constructed. The Instrument as constructed can record temperatures at depths of 5, 10, 15 and 30 cm and also at depths of 10,15, 20 and 35,or15, 20, 25 and 40 cm by inserting it into the soil to different points. The instrument can be installed by simply driving it into the soil without materially disturbing the soil packing or the vegetation cover and reliable readings can be obtained within a short time of its insertion unlike in the case of ordinary soil thermometers.

Water ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 1747 ◽  
Author(s):  
Javier Lozano-Parra ◽  
Manuel Pulido ◽  
Carlos Lozano-Fondón ◽  
Susanne Schnabel

Interactions between land and atmosphere directly influence hydrometeorological processes and, therefore, the local climate. However, because of heterogeneity of vegetation covers these feedbacks can change over small areas, becoming more complex. This study aims to define how the interactions between soil moisture and vegetation covers influence soil temperatures in very water-limited environments. In order to do that, soil water content and soil temperature were continuously monitored with a frequency of 30 min over two and half hydrological years, using capacitance and temperature sensors that were located in open grasslands and below tree canopies. The study was carried out on three study areas located in drylands of Mediterranean climate. Results highlighted the importance of soil moisture and vegetation cover in modifying soil temperatures. During daytime and with low soil moisture conditions, daily maximum soil temperatures were, on average, 7.1 °C lower below tree canopies than in the air, whereas they were 4.2 °C higher in grasslands than in the air. As soil wetness decreased, soil temperature increased, although this effect was significantly weaker below tree canopies than in grasslands. Both high soil water content and the effect of shading were reflected in a decrease of maximum soil temperatures and of their daily amplitudes. Statistical analysis emphasized the influence of soil temperature on soil water reduction, regardless of vegetation cover. If soil moisture deficits become more frequent due to climate change, variations in soil temperature could increase, affecting hydrometeorological processes and local climate.


2017 ◽  
Vol 29 (2) ◽  
pp. 101-109
Author(s):  
Md Harunor Rashid Khan

A field study was conducted to evaluate the possible factors controlling the fluxes of carbon dioxide along a toposequence of daily to seasonally flooded coastal salt marsh soils. The soil at the top end of the salt marsh (with a height of 1.8 m above sea level (a.s.l.) and a dense vegetation cover) was salic silty to clayic (Typic Sulfaquent), while the soil at the bottom end (with some salt bushes and a 1.4 m a.s.l.) was sandy to silty (Haplic Sulfaquent). The mean (depth: 0 - 100 cm) values of pH were around 7, and of redox potentials (Eh) in the Typic Sulfaquent ranged from -162 to + 104 mV during all the seasons. The average net-emission of CO2 (-14.0 g m-2 a-1) above the vegetation cover was negative for the Haplic Sulfaquent but highly positive for Typic Sulfaquent round the year (857 g m-2 a-1). The average maximum concentrations of CO2 were detected within the surface soils 20 to 40 cm in both the profiles. In the surface soils of 0 to 20 cm the concentrations of CO2 measured were relatively low though the values were about 5 to 20 times higher than that of the atmospheric (0.35 g/v) concentration. For the average of two Haplic Sulfaquents, the soil temperatures were almost 2°C higher than that of the Typic Sulfaquent and it was also 2.5°C higher than the mean annual temperature (9.5°C) of the soils. The current results show that the CO2 fluxes seasonally varied significantly and for certain periods of the year the coastal salt marsh soils can act either as a sink or source for atmospheric CO2 depending on the physical and chemical properties of the soils.Bangladesh J. Sci. Res. 29(2): 101-109, December-2016


2016 ◽  
Vol 8 (2) ◽  
pp. 147-151 ◽  
Author(s):  
M Akter ◽  
MA Miah ◽  
MM Hassan ◽  
MN Mobin ◽  
MA Baten

An experiment was conducted at the field laboratory of Department of Environmental Science, Bangladesh Agricultural University, Mymensingh to study the textural influence on surface and subsurface soil temperatures under various conditions. The experiment consisted of four types of soil (red, sandy, clay and peat). Observations were made at three conditions viz. bare, moist and vegetation cover. Sandy soil at bare condition showed the highest surface temperature followed by peat, red and clay soils. Sand surface produced nearly 10ºC higher values than from clay soil at around midday hours. In four types of soils, the amplitude of the daily surface temperature wave decreased in the order sand > peat > red > clay at bare dry condition. In case of subsurface temperature observed at 10 cm depth, red, clay and peat soils showed insignificant differences. Soil surface temperatures of 4 types soils under moisture condition at around mid days showed similar pattern as in dry condition i.e. sand > peat > red > clay. Soil subsurface temperatures of 4 types soils under moisture condition at around mid days showed similar pattern as in surface temperature. Among three conditions, sandy soil emitted highest long wave radiation (-649.88 Wm-2) at bare condition. The long wave radiation emitted by the surface was lower when the soil was wet and has vegetation cover. Air temperature positively correlated with soil temperature.J. Environ. Sci. & Natural Resources, 8(2): 147-151 2015


2010 ◽  
Vol 7 (3) ◽  
pp. 883-891 ◽  
Author(s):  
B. D. Sigurdsson ◽  
B. Magnusson

Abstract. When Surtsey rose from the North Atlantic Ocean south of Iceland in 1963, it became a unique natural laboratory on how organisms colonize volcanic islands and form ecosystems with contrasting structures and functions. In July, 2004, ecosystem respiration rate (Re), soil properties and surface cover of vascular plants were measured in 21 permanent research plots distributed among the juvenile communities of the island. The plots were divided into two main groups, inside and outside a seagull (Larus spp.) colony established on the island. Vegetation cover of the plots was strongly related to the density of gull nests. Occurrence of nests and increased vegetation cover also coincided with significant increases in Re, soil carbon, nitrogen and C:N ratio, and with significant reductions in soil pH and soil temperatures. Temperature sensitivity (Q10 value) of Re was determined as 5.3. When compared at constant temperature the Re was found to be 59 times higher within the seagull colony, similar to the highest fluxes measured in drained wetlands or agricultural fields in Iceland. The amount of soil nitrogen, mainly brought onto the island by the seagulls, was the critical factor that most influenced ecosystem fluxes and vegetation development on Surtsey. The present study shows how ecosystem activity can be enhanced by colonization of animals that transfer resources from a nearby ecosystem.


2009 ◽  
Vol 55 (No. 1) ◽  
pp. 32-40 ◽  
Author(s):  
A. Véle ◽  
J. Holuša ◽  
J. Frouz

Five types of stand stages (clearings-samplings, plantations, thinnings, thickets, and mature forests) of spruce forests were examined at the foothills of the Jizerské hory Mts. in summer 2005 and 2006. The presence of ants was surveyed by catching them into pitfall traps and observing on baits. Higher numbers of <I>Formica fusca</I> ants were found in clearings-samplings and in plantations. Their activity was higher at the soil and air temperature of 20–30°C. The peak of activity was observed in July. Most specimens were trapped at lighter habitats and in the sites with more than 50% herbaceous and gramineous vegetation cover. <I> F. pratensis</I> was trapped in plantations and thickets. It was active at the soil temperatures 12–21°C and air temperatures 16–25°C. It occurred both in dark and light areas. <I>F. sanguinea</I> most commonly occurred in thinnings. This species was the most active at the soil temperature 20–30°C. Its activity depending on air temperature grew almost linearly. It occurred both in dark and in light stand stages with at least 60% vegetation cover. <I>F. truncorum</I> was observed only in thinnings. The activity of <I>F. truncorum</I> was the highest at the air and soil temperatures 15–25°C. The peak of activity was recorded in July. It was observed only in stands with the quantity of incident radiation 1,030 lx and with 20–80% of undergrowth cover.


2018 ◽  
Vol 41 ◽  
Author(s):  
Barbara A. Spellman ◽  
Daniel Kahneman
Keyword(s):  

AbstractReplication failures were among the triggers of a reform movement which, in a very short time, has been enormously useful in raising standards and improving methods. As a result, the massive multilab multi-experiment replication projects have served their purpose and will die out. We describe other types of replications – both friendly and adversarial – that should continue to be beneficial.


2000 ◽  
Vol 179 ◽  
pp. 197-200
Author(s):  
Milan Minarovjech ◽  
Milan Rybanský ◽  
Vojtech Rušin

AbstractWe present an analysis of short time-scale intensity variations in the coronal green line as obtained with high time resolution observations. The observed data can be divided into two groups. The first one shows periodic intensity variations with a period of 5 min. the second one does not show any significant intensity variations. We studied the relation between regions of coronal intensity oscillations and the shape of white-light coronal structures. We found that the coronal green-line oscillations occur mainly in regions where open white-light coronal structures are located.


Author(s):  
P. Maupin-Szamier ◽  
T. D. Pollard

We have studied the destruction of rabbit muscle actin filaments by osmium tetroxide (OSO4) to develop methods which will preserve the structure of actin filaments during preparation for transmission electron microscopy.Negatively stained F-actin, which appears as smooth, gently curved filaments in control samples (Fig. 1a), acquire an angular, distorted profile and break into progressively shorter pieces after exposure to OSO4 (Fig. 1b,c). We followed the time course of the reaction with viscometry since it is a simple, quantitative method to assess filament integrity. The difference in rates of decay in viscosity of polymerized actin solutions after the addition of four concentrations of OSO4 is illustrated in Fig. 2. Viscometry indicated that the rate of actin filament destruction is also dependent upon temperature, buffer type, buffer concentration, and pH, and requires the continued presence of OSO4. The conditions most favorable to filament preservation are fixation in a low concentration of OSO4 for a short time at 0°C in 100mM sodium phosphate buffer, pH 6.0.


Sign in / Sign up

Export Citation Format

Share Document