scholarly journals A semi-implicit multiple-nested grid model for simulation of flow in a tropical storm

MAUSAM ◽  
2021 ◽  
Vol 47 (1) ◽  
pp. 1-20
Author(s):  
J.C. MANDAL

ABSTRACT .A three-layer three-dimensional, triply-nested primitive equation model. suitable to simulate tropical storm, has been designed. A grid telescopic technique has been used with a fine grid mesh of 18 km grid length in the centre which is surrounded by a medium mesh of 54 km grid length; this is again surrounded by a course grid mesh of 162 km grid length. Each mesh consists of 32 X 32 array of momentum points enclosing 31 X 31 array of mass points. The variables are staggered in space which reduces the amount of averaging to a minimum and hence improves accuracy. To suppress non-linear instability an improved finite difference scheme has been applied. A two-way interaction method has been adopt to match the solutions between grids of different lengths. To increase the time step for integration, a semi-implicit scheme has been used. The speed of the solution of the system of Helmholtz equations arising out of semi-implicit scheme has been appreciably increased by devising an iterative method. To examine the role of surface friction as postulated by Yamasaki (1977) and forced subsidence as hypothesized by Arnold (1977), Gray (1977) and Yanai (1961) at the initial stage of development of a tropical storm. numerical experiments have been accomplished with this model varying coefficient of surface drag. and specifying heat around the centre of the to disturbance which is considered as the effect of forced subsidence through an analytical function similar to one used by Harrison (1973). The integration was started from a weak barotropic vortex in &r8dient balance en and continued for 48 hours in two cases and 60 hours in one case. It is observed that surface friction may not be an essential factor at the initial stage of development of tropical storm when the vortex is weak. On the  other  hand, initial development could be initiated by forced subsidence. But in the subsequent stage, surface friction plays an important role to induce mass convergence in the boundary layer and to reduce horizontal of the disturbance. This preliminary experiment has yielded smooth and encouraging results.    

2012 ◽  
Vol 72 (4) ◽  
pp. 807-811 ◽  
Author(s):  
MA. Kieling-Rubio ◽  
A. Droste ◽  
PG. Windisch

The heterosporous fern Regnellidium diphyllum occurs in southern Brazil and some adjoining localities in Uruguay and Argentina. Currently it is on the list of threatened species in the state of Rio Grande do Sul. Anthropic alterations such as the conversion of wetlands into agricultural areas or water and soil contamination by pollutants may compromise the establishment and survival of this species. Nickel (Ni) is an essential nutrient for plants but increasing levels of this metal due to pollution can cause deleterious effects especially in aquatic macrophytes. Megaspore germination tests were performed using Meyer's solution, at concentrations of 0 (control), 0.05, 0.5, 1, 5, 10, 20, 30, 50 and 100 mg L-1 of Ni. The initial development of apomictic sporophytes was studied using solutions containing 0 (control) to 4.8 mg L-1 of Ni. A significant negative relation was observed between the different Ni concentrations and the megaspore germination/sporophyte formation rates. Primary roots, primary leaves and secondary leaves were significantly shorter at 3.2 and 4.8 mg L-1 of Ni, when compared with the treatment without this metal. At 4.8 mg L-1, leaves also presented chlorosis and necrosis. The introduction of pollutants with Ni in the natural habitat of Regnellidium diphyllum may inhibit the establishment of plants in the initial stage of development, a problem to be considered in relation to the conservation of this species.


Author(s):  
Francisco Vanies da Silva Sá ◽  
Miguel Ferreira Neto ◽  
Yuri Bezerra De Lima ◽  
Emanoela Pereira De Paiva ◽  
Hans Raj Gheyi ◽  
...  

The objective of this work was to study the effects of irrigation with saline water associated with phosphate fertilization on the emergence and early growth of cowpea plants. The assay was conducted in the greenhouse of the Department of Environmental Sciences and Technology of the Federal Rural University of the Semi-Arid (UFERSA) in Mossoró-RN, during October and November of 2015.  The study adopted a randomized block with treatments arranged in a 5 x 3 grid, corresponding to five levels of water salinity (0.5, 1.5, 2.5, 3.5 and 4.5 dS m-1) and three doses of superphosphate, based upon the soil analysis (60%, 100% and 140% of the recommended dose for the crop 60 kg P2O5 ha-1), with five repetitions. The cowpea plants, cv. Paulistinha, were grown in lysimeters with capacity of 8 dm3. During the first 15 days of the initial stage of development the plants were evaluated for emergence, growth and biomass accumulation. The increase in water salinity above 1.5 dSm-1 reduced the emergence, growth and dry matter accumulation of cowpea plants. The increase of 40% in the recommendation of phosphorus fertilization of cowpea increased the growth and biomass accumulation of shoot plants, regardless of salinity.


2021 ◽  
Author(s):  
Chennakesava Kadapa

AbstractThis paper presents a novel semi-implicit scheme for elastodynamics and wave propagation problems in nearly and truly incompressible material models. The proposed methodology is based on the efficient computation of the Schur complement for the mixed displacement-pressure formulation using a lumped mass matrix for the displacement field. By treating the deviatoric stress explicitly and the pressure field implicitly, the critical time step is made to be limited by shear wave speed rather than the bulk wave speed. The convergence of the proposed scheme is demonstrated by computing error norms for the recently proposed LBB-stable BT2/BT1 element. Using the numerical examples modelled with nearly and truly incompressible Neo-Hookean and Ogden material models, it is demonstrated that the proposed semi-implicit scheme yields significant computational benefits over the fully explicit and the fully implicit schemes for finite strain elastodynamics simulations involving incompressible materials. Finally, the applicability of the proposed scheme for wave propagation problems in nearly and truly incompressible material models is illustrated.


2021 ◽  
pp. 34-41
Author(s):  
Mohamed Hamada ◽  
Daniya Temirkhanova ◽  
Diana Serikbay ◽  
Sanzhar Salybekov ◽  
Saltanat Omarbek

The main objective of the research is identifying the effectiveness of artificial intelligence in the business sphere of Kazakhstan. The urgency of this problem is due to the fact that the Kazakhstani market for artificial intelligence is at the initial stage of development. The main obstacle to the introduction of artificial intelligence is the unpreparedness of managers of small and medium-sized businesses for the application of artificial intelligence technologies and, of course, the high cost of their implementation. In the study, we proceeded from the key thesis that business in Kazakhstan is striving for digital transformation. We set a goal to determine the attitude and degree of readiness of Kazakhstani business to the implementation and practical application of artificial intelligence, to describe the cases of using artificial intelligence by Kazakhstani business, to identify the main questions that arise in business at this stage, to study the legal aspects of using artificial intelligence in business and to present the big picture compliance / inconsistency of the existing legal framework with the goals and objectives of the development of artificial intelligence, provide recommendations for eliminatinge xisting barriers and stimulating businesses to implement the technology. Within the framework of this study, the concept of artificial intelligence is defined in its broadest sense - as a set of technologies for processing various types of data and information, in particular those capable of interpreting such data, extracting knowledge and using it to achieve certain goals.


2008 ◽  
Vol 7 (2) ◽  
pp. 444-450 ◽  
Author(s):  
M.L. Camparoto ◽  
B. Fulan ◽  
C.M. Colli ◽  
M.L. Paludo ◽  
A.L. Falavigna-Guilherme ◽  
...  

2009 ◽  
Vol 45 (2) ◽  
pp. 189-200 ◽  
Author(s):  
Carolina Fracalossi Rediguieri

The study shows how nanotechnology evolves in developed countries and Brazil, raising aspects of private and governmental initiatives. The investigation was based in scientific literature, electronic articles and conference reports. Several sources of literature were used, including electronic databases and reference lists. By this study, it was observed that, although nanotechnology is in initial stage of development all over the world, the developed countries have had growing public and private investments in the area each year. In those countries, there is a concern toward both, the formation of specialists in nanotechnology and the transference of technology developed in universities and research institutes to industry. In Brazil, the study showed that despite the growing concern of investigators, national research centers and financial centers toward the development of the nanotechnology, there is still a need for more investment and formation of area specialists.


PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0247521
Author(s):  
Yujun Liu ◽  
Haibin LÜ ◽  
Honghua Zhang ◽  
Yusheng Cui ◽  
Xueting Xing

A tropical storm (TS) Roanu occurred in northern Sri Lanka in 2016, which transported northwards along the west coast of the Bay of Bengal (BoB). During the development of the TS, ocean eddies on its track had an important effect on the intensity of Roanu. The dynamic mechanism was investigated with multisource reanalysis and Argo float data in this study. The results show that ocean eddies were the main reason why Roanu first enhanced, weakened, and then enhanced again. Warm eddy W1 supports the initial development of the TS, cold eddy C1 weakens Roanu, and warm eddy W2 continues to support Roanu. On May 19, 2016, the maximum average latent heat flux over W1 was 260.85 w/m2, while that of C1 was only 200.71 w/m2. After the passage of Roanu, the tropical cyclone heat potential (TCHP) of eddies significantly decreased. The TCHP of W1, W2, C1 and C2 decreased by 20.95 kJ/cm2, 11.07 kJ/cm2, 29.82 kJ/cm2, 9.31 kJ/cm2, respectively. The mixed layer of warm eddies deepened much more than that of cold eddies, supporting Roanu development. In addition, changes in potential vorticity (PV) values caused by the disturbance of eddies may also reflect changes in the TS intensity. This study offers new insights on the influence of ocean eddies in regulating the development of tropical cyclone (TC) in the BoB.


1970 ◽  
Vol 6 (3) ◽  
pp. 320-326 ◽  
Author(s):  
L. V. Al'tshuler ◽  
A. V. Balabanov ◽  
V. A. Batalov ◽  
V. A. Rodionov ◽  
D. M. Tarasov

Sign in / Sign up

Export Citation Format

Share Document