scholarly journals INFLUENCE OF EQUATORIAL PACIFIC SST ANOMALIES OF NINO 3.0 AND 3.4 ON INDIAN SUB-DIVISIONAL RAINFALLS

MAUSAM ◽  
2021 ◽  
Vol 57 (3) ◽  
pp. 517-523
Author(s):  
K. SEETHARAM
2006 ◽  
Vol 19 (6) ◽  
pp. 998-1012 ◽  
Author(s):  
Bruce T. Anderson ◽  
Eric Maloney

Abstract This paper describes aspects of tropical interannual ocean/atmosphere variability in the NCAR Community Climate System Model Version 2.0 (CCSM2). The CCSM2 tropical Pacific Ocean/atmosphere system exhibits much stronger biennial variability than is observed. However, a canonical correlation analysis technique decomposes the simulated boreal winter tropical Pacific sea surface temperature (SST) variability into two modes, both of which are related to atmospheric variability during the preceding boreal winter. The first mode of ocean/atmosphere variability is related to the strong biennial oscillation in which La Niña–related sea level pressure (SLP) conditions precede El Niño–like SST conditions the following winter. The second mode of variability indicates that boreal winter tropical Pacific SST anomalies can also be initiated by SLP anomalies over the subtropical central and eastern North Pacific 12 months earlier. The evolution of both modes is characterized by recharge/discharge within the equatorial subsurface temperature field. For the first mode of variability, this recharge/discharge produces a lag between the basin-average equatorial Pacific isotherm depth anomalies and the isotherm–slope anomalies, equatorial SSTs, and wind stress fields. Significant anomalies are present up to a year before the boreal winter SLP variations and two years prior to the boreal winter ENSO-like events. For the second canonical factor pattern, the recharge/discharge mechanism is induced concurrent with the boreal winter SLP pattern approximately one year prior to the ENSO-like events, when isotherms initially deepen and change their slope across the basin. A rapid deepening of the isotherms in the eastern equatorial Pacific and a warming of the overlying SST anomalies then occurs during the subsequent 12 months.


2005 ◽  
Vol 18 (21) ◽  
pp. 4454-4473 ◽  
Author(s):  
Renguang Wu ◽  
Ben P. Kirtman

Abstract Equatorial Pacific sea surface temperature (SST) anomalies in the Center for Ocean–Land–Atmosphere Studies (COLA) interactive ensemble coupled general circulation model show near-annual variability as well as biennial El Niño–Southern Oscillation (ENSO) variability. There are two types of near-annual modes: a westward propagating mode and a stationary mode. For the westward propagating near-annual mode, warm SST anomalies are generated in the eastern equatorial Pacific in boreal spring and propagate westward in boreal summer. Consistent westward propagation is seen in precipitation, surface wind, and ocean current. For the stationary near-annual mode, warm SST anomalies develop near the date line in boreal winter and decay locally in boreal spring. Westward propagation of warm SST anomalies also appears in the developing year of the biennial ENSO mode. However, warm SST anomalies for the westward propagating near-annual mode occur about two months earlier than those for the biennial ENSO mode and are quickly replaced by cold SST anomalies, whereas warm SST anomalies for the biennial ENSO mode only experience moderate weakening. Anomalous zonal advection contributes to the generation and westward propagation of warm SST anomalies for both the westward propagating near-annual mode and the biennial ENSO mode. However, the role of mean upwelling is markedly different. The mean upwelling term contributes to the generation of warm SST anomalies for the biennial ENSO mode, but is mainly a damping term for the westward propagating near-annual mode. The development of warm SST anomalies for the stationary near-annual mode is partially due to anomalous zonal advection and upwelling, similar to the amplification of warm SST anomalies in the equatorial central Pacific for the biennial ENSO mode. The mean upwelling term is negative in the eastern equatorial Pacific for the stationary near-annual mode, which is opposite to the ENSO mode. The development of cold SST anomalies in the aftermath of warm SST anomalies for the westward propagating near-annual mode is coupled to large easterly wind anomalies, which occur between the warm and cold SST anomalies. The easterly anomalies contribute to the cold SST anomalies through anomalous zonal, meridional, and vertical advection and surface evaporation. The cold SST anomalies, in turn, enhance the easterly anomalies through a Rossby-wave-type response. The above processes are most effective during boreal spring when the mean near-surface-layer ocean temperature gradient is the largest. It is suggested that the westward propagating near-annual mode is related to air–sea interaction processes that are limited to the near-surface layers.


1993 ◽  
Vol 6 (5) ◽  
pp. 777-795 ◽  
Author(s):  
Franco Molteni ◽  
Laura Ferranti ◽  
T. N. Palmer ◽  
Pedro Viterbo

2014 ◽  
Vol 27 (7) ◽  
pp. 2577-2587 ◽  
Author(s):  
Joke F. Lübbecke ◽  
Michael J. McPhaden

Abstract A decadal change in the character of ENSO was observed around year 2000 toward weaker-amplitude, higher-frequency events with an increased occurrence of central Pacific El Niños. Here these changes are assessed in terms of the Bjerknes stability index (BJ index), which is a measure of the growth rate of ENSO-related SST anomalies. The individual terms of the index are calculated from ocean reanalysis products separately for the time periods 1980–99 and 2000–10. The spread between the products is large, but they show a robust weakening of the thermocline feedback due to a reduced thermocline slope response to anomalous zonal wind stress as well as a weakened wind stress response to eastern equatorial Pacific SST anomalies. These changes are consistent with changes in the background state of the tropical Pacific: cooler mean SST in the eastern and central equatorial Pacific results in reduced convection there together with a westward shift in the ascending branch of the Walker circulation. This shift leads to a weakening in the relationship between eastern Pacific SST and longitudinally averaged equatorial zonal wind stress. Also, despite a steeper mean thermocline slope in the more recent period, the thermocline slope response to wind stress anomalies weakened due to a smaller zonal wind fetch that results from ENSO-related wind anomalies being more confined to the western basin. As a result, the total BJ index is more negative, corresponding to a more strongly damped system in the past decade compared to the 1980s and 1990s.


2018 ◽  
Vol 32 (2) ◽  
pp. 369-383 ◽  
Author(s):  
Jun Ying ◽  
Ping Huang ◽  
Tao Lian ◽  
Dake Chen

Abstract This study investigates the mechanism of the large intermodel uncertainty in the change of ENSO’s amplitude under global warming based on 31 CMIP5 models. We find that the uncertainty in ENSO’s amplitude is significantly correlated to that of the change in the response of atmospheric circulation to SST anomalies (SSTAs) in the eastern equatorial Pacific Niño-3 region. This effect of the atmospheric response to SSTAs mainly influences the uncertainty in ENSO’s amplitude during El Niño (EN) phases, but not during La Niña (LN) phases, showing pronounced nonlinearity. The effect of the relative SST warming and the present-day response of atmospheric circulation to SSTAs are the two major contributors to the intermodel spread of the change in the atmospheric response to SSTAs, of which the latter is more important. On the one hand, models with a stronger (weaker) mean-state SST warming in the eastern equatorial Pacific, relative to the tropical-mean warming, favor a larger (smaller) increase in the change in the response of atmospheric circulation to SSTAs in the eastern equatorial Pacific during EN. On the other hand, models with a weaker (stronger) present-day response of atmospheric circulation to SSTAs during EN tend to exhibit a larger (smaller) increase in the change under global warming. The result implies that an improved simulation of the present-day response of atmospheric circulation to SSTAs could be effective in lowering the uncertainty in ENSO’s amplitude change under global warming.


2009 ◽  
Vol 22 (7) ◽  
pp. 1801-1818 ◽  
Author(s):  
Renguang Wu ◽  
Ben P. Kirtman ◽  
Huug van den Dool

Abstract The present study documents the so-called spring prediction and persistence barriers in association with El Niño–Southern Oscillation (ENSO) in the National Centers for Environmental Prediction (NCEP) Climate Forecast System (CFS) retrospective forecasts. It is found that the spring prediction and persistence barriers in the eastern equatorial Pacific sea surface temperature (SST) are preceded by a boreal winter barrier in the western equatorial Pacific zonal wind stress. The time of the persistence barrier is closely related to the time of the ENSO phase transition, but may differ from the time of the lowest variance. The seasonal change of the signal-to-noise ratio cannot explain the persistence barrier. While the noise may lead to a drop of skill around boreal spring in the western equatorial Pacific zonal wind stress, its impacts on the skill of eastern equatorial Pacific SST is small. The equatorial Pacific zonal winds display an excessive response to ENSO-related SST anomalies, which leads to a longer persistence in the equatorial Pacific thermocline depth anomalies and a delayed transition of the eastern equatorial Pacific SST anomalies. This provides an interpretation for the prediction skill drop in boreal spring in the eastern equatorial Pacific SST. The results suggest that improving the atmospheric model wind response to SST anomalies may reduce the spring prediction barrier.


2021 ◽  
Vol 9 ◽  
Author(s):  
Yi-He Fang ◽  
Meng-Meng Zhang ◽  
Chun-Yu Zhao ◽  
Zhi-Qiang Gong ◽  
Xiao-Yu Zhou ◽  
...  

In this study, a K-means clustering (KMC) method was used to identify the paths of the Northeast China (NEC) Cold Vortex (NCCV). The NCCV was divided into four types according to the identified active paths: (1) Eastward movement type (EM); (2) Southeastward long-distance movement type (SLM); (3) Eastward short-distance movement type (ESM); and (4) Southward short-distance movement type (SSM). The characteristics of the four types of the NCCV, along with their impacts on the precipitation during early summer in NEC, were studied. The results showed that the KMC method can effectively divide the NCCV events into four different types. The maintaining days of these four types of the NCCV were found to have obvious interannual and interdecadal variation features. For example, the maintaining days of the EM and ESM types were mainly characterized by interannual variability, while the SLM and SSM types have the obvious 10–13a interdecadal variation along with interannual variability. In terms of the spatial distributions and impacts on precipitation, the EM type was found to appear in the majority of the areas located in NEC, the SLM type mainly occurred in the northwestern region of NEC and the highest rain center was located in the south-central portion, while the ESM type and SSM type were observed precipitation only appear in a small portion of the northeastern region. In addition, it is also observed the distribution of the sea-surface temperature (SST) anomalies had close relationship with the formation of these four types of the NCCV. The tripole distributions of the SST anomalies in the Atlantic Ocean corresponded to the EM type of the NCCV, the positive anomalies of SST in the eastern equatorial Pacific Ocean and negative anomalies in the western equatorial Pacific corresponded to the SLM type, the positive SSTs in the Northwest Pacific correspond to the ESM type, while negative anomalies SST in the western equatorial Pacific Ocean corresponded to the SSM type of the NCCV.


2020 ◽  
Vol 33 (17) ◽  
pp. 7391-7411
Author(s):  
Soumi Chakravorty ◽  
Renellys C. Perez ◽  
Bruce T. Anderson ◽  
Benjamin S. Giese ◽  
Sarah M. Larson ◽  
...  

AbstractDuring the positive phase of the North Pacific Oscillation, westerly wind anomalies over the subtropical North Pacific substantially increase subsurface heat content along the equator by “trade wind charging” (TWC). TWC provides a direct pathway between extratropical atmospheric circulation and El Niño–Southern Oscillation (ENSO) initiation. Previous model studies of this mechanism lacked the ocean–atmospheric coupling needed for ENSO growth, so it is crucial to examine whether TWC-induced heat content anomalies develop into ENSO events in a coupled model. Here, coupled model experiments, forced with TWC favorable (+TWC) or unfavorable (−TWC) wind stress, are used to examine the ENSO response to TWC. The forcing is imposed on the ocean component of the model through the first winter and then the model evolves in a fully coupled configuration through the following winter. The +TWC (−TWC) forcing consistently charges (discharges) the equatorial Pacific in spring and generates positive (negative) subsurface temperature anomalies. These subsurface temperature anomalies advect eastward and upward along the equatorial thermocline and emerge as like-signed sea surface temperature (SST) anomalies in the eastern Pacific, creating favorable conditions upon which coupled air–sea feedback can act. During the fully coupled stage, warm SST anomalies in +TWC forced simulations are amplified by coupled feedbacks and lead to El Niño events. However, while −TWC forcing results in cool SST anomalies, pre-existing warm SST anomalies in the far eastern equatorial Pacific persist and induce local westerly wind anomalies that prevent consistent development of La Niña conditions. While the TWC mechanism provides adequate equatorial heat content to fuel ENSO development, other factors also play a role in determining whether an ENSO event develops.


Sign in / Sign up

Export Citation Format

Share Document