scholarly journals A diagnostic study on the energetics aspects of hiatus in the advance of southwest monsoon

MAUSAM ◽  
2021 ◽  
Vol 60 (4) ◽  
pp. 427-436
Author(s):  
SOMENATH DUTTA ◽  
U. S. DE ◽  
SUNITHA DEVI

Advance of southwest monsoon, after its onset, often gets stalled for a week or more causing concern to the farmers and other community whose activities are weather dependent. The present study on the energetics aspect of hiatus in the advance of southwest monsoon over India aims at understanding the dynamical reasons for this. Nine cases of hiatus of duration more than 10 days during 1982-2006 have been selected. For each hiatus case, different energy terms, their generation and conversion among different terms have been computed during the hiatus period and also during the pre-hiatus pentad over a limited region between 65° E to 90° E, 5° N to 30° N. These computations are based on NCEP 2.5° × 2.5°  re-analysed daily composite data during different hiatus period and during corresponding pre-hiatus pentad.                 From this study it is found that :   (i)     In most of the cases there is a reduction in the generation of zonal available potential energy [G(AZ)] during hiatus period compared to pre-hiatus pentad.   (ii)    Drop in the conversion from zonal available potential energy to zonal kinetic energy [C(AZ, KZ)] during hiatus period has been observed in most of the cases.   (iii)   In most of the cases there is a reduction in zonal kinetic energy (KZ) and in eddy kinetic energy (KE) during hiatus period compared to pre-hiatus pentad.

2008 ◽  
Vol 21 (22) ◽  
pp. 5797-5806 ◽  
Author(s):  
Paul A. O’Gorman ◽  
Tapio Schneider

Abstract As the climate changes, changes in static stability, meridional temperature gradients, and availability of moisture for latent heat release may exert competing effects on the energy of midlatitude transient eddies. This paper examines how the eddy kinetic energy in midlatitude baroclinic zones responds to changes in radiative forcing in simulations with an idealized moist general circulation model. In a series of simulations in which the optical thickness of the longwave absorber is varied over a wide range, the eddy kinetic energy has a maximum for a climate with mean temperature similar to that of present-day earth, with significantly smaller values both for warmer and for colder climates. In a series of simulations in which the meridional insolation gradient is varied, the eddy kinetic energy increases monotonically with insolation gradient. In both series of simulations, the eddy kinetic energy scales approximately linearly with the dry mean available potential energy averaged over the baroclinic zones. Changes in eddy kinetic energy can therefore be related to the changes in the atmospheric thermal structure that affect the mean available potential energy.


2017 ◽  
Vol 47 (5) ◽  
pp. 1169-1187 ◽  
Author(s):  
Yang Yang ◽  
X. San Liang ◽  
Bo Qiu ◽  
Shuiming Chen

AbstractPrevious studies have found that the decadal variability of eddy kinetic energy (EKE) in the upstream Kuroshio Extension is negatively correlated with the jet strength, which seems counterintuitive at first glance because linear stability analysis usually suggests that a stronger jet would favor baroclinic instability and thus lead to stronger eddy activities. Using a time-varying energetics diagnostic methodology, namely, the localized multiscale energy and vorticity analysis (MS-EVA), and the MS-EVA-based nonlinear instability theory, this study investigates the physical mechanism responsible for such variations with the state estimate from the Estimating the Circulation and Climate of the Ocean (ECCO), Phase II. For the first time, it is found that the decadal modulation of EKE is mainly controlled by the barotropic instability of the background flow. During the high-EKE state, violent meanderings efficiently induce strong barotropic energy transfer from mean kinetic energy (MKE) to EKE despite the rather weak jet strength. The reverse is true in the low-EKE state. Although the enhanced meander in the high-EKE state also transfers a significant portion of energy from mean available potential energy (MAPE) to eddy available potential energy (EAPE) through baroclinic instability, the EAPE is not efficiently converted to EKE as the two processes are not well correlated at low frequencies revealed in the time-varying energetics. The decadal modulation of barotropic instability is found to be in pace with the North Pacific Gyre Oscillation but with a time lag of approximately 2 years.


2008 ◽  
Vol 65 (7) ◽  
pp. 2153-2173 ◽  
Author(s):  
Tapio Schneider ◽  
Christopher C. Walker

Abstract In simulations of a wide range of circulations with an idealized general circulation model, clear scaling laws of dry atmospheric macroturbulence emerge that are consistent with nonlinear eddy–eddy interactions being weak. The simulations span several decades of eddy energies and include Earth-like circulations and circulations with multiple jets and belts of surface westerlies in each hemisphere. In the simulations, the eddy available potential energy and the barotropic and baroclinic eddy kinetic energy scale linearly with each other, with the ratio of the baroclinic eddy kinetic energy to the barotropic eddy kinetic energy and eddy available potential energy decreasing with increasing planetary radius and rotation rate. Mean values of the meridional eddy flux of surface potential temperature and of the vertically integrated convergence of the meridional eddy flux of zonal momentum generally scale with functions of the eddy energies and the energy-containing eddy length scale, with a few exceptions in simulations with statically near-neutral or neutral extratropical thermal stratifications. Eddy energies scale with the mean available potential energy and with a function of the supercriticality, a measure of the near-surface slope of isentropes. Strongly baroclinic circulations form an extended regime in which eddy energies scale linearly with the mean available potential energy. Mean values of the eddy flux of surface potential temperature and of the vertically integrated eddy momentum flux convergence scale similarly with the mean available potential energy and other mean fields. The scaling laws for the dependence of eddy fields on mean fields exhibit a regime transition between a regime in which the extratropical thermal stratification and tropopause height are controlled by radiation and convection and a regime in which baroclinic entropy fluxes modify the extratropical thermal stratification and tropopause height. At the regime transition, for example, the dependence of the eddy flux of surface potential temperature and the dependence of the vertically integrated eddy momentum flux convergence on mean fields changes—a result with implications for climate stability and for the general circulation of an atmosphere, including its tropical Hadley circulation.


MAUSAM ◽  
2021 ◽  
Vol 67 (2) ◽  
pp. 493-498
Author(s):  
SOMENATH DUTTA ◽  
D. M. RASE ◽  
SUNITHA DEVI

An attempt has been made to study dynamics of consecutive weak/strong spell of north east monsoon for the years, 2009 and 2010 from an energetics aspect.  For that different energy terms, their generation and conversion among different energy terms have been computed for consecutive weak and strong phases during Oct to Dec of the above two years over a limited region between 70 °E to 85 °E, 5 °N to 20 °N. These computations are based on daily NCEP 2.5° × 2.5° data for the same period. The transition from weak phase to strong phase of north east monsoon (NEM) observed to be associated with an enhancement in conversion of zonal available potential energy (Az) to zonal kinetic energy (Kz), implying a strengthening of Hadley circulation, favouring the above transition. It is also observed that the transition from weak phase to strong phase is associated with enhanced Baroclinic energy conversion  


2016 ◽  
Vol 56 ◽  
pp. 5.1-5.16 ◽  
Author(s):  
T. N. Krishnamurti ◽  
Ruby Krishnamurti ◽  
Anu Simon ◽  
Aype Thomas ◽  
Vinay Kumar

This chapter distinguishes the mechanism of tropical convective disturbances, such as a hurricane, from that of the Madden–Julian oscillation (MJO). The hurricane is maintained by organized convection around the azimuth. In a hurricane the organization of convection, the generation of eddy available potential energy, and the transformation of eddy available potential energy into eddy kinetic energy all occur on the scale of the hurricane and these are called “in-scale processes,” which invoke quadratic nonlinearity. The MJO is not a hurricane type of disturbance; organized convection simply does not drive an MJO in the same manner. The maintenance of the MJO is more akin to a multibody problem where the convection is indeed organized on scales of tropical synoptic disturbances that carry a similar organization of convection and carry similar roles for the generation of eddy available potential energy and its conversion to the eddy kinetic energy for their maintenance. The maintenance of the MJO is a scale interaction problem that comes next, where pairs of synoptic-scale disturbances are shown to interact with a member of the MJO time scale, thus contributing to its maintenance. This chapter illustrates the organization of convection, synoptic-scale energetics, and nonlinear scale interactions to show the above aspects for the mechanism of the MJO.


2014 ◽  
Vol 71 (8) ◽  
pp. 2944-2961 ◽  
Author(s):  
Cory Baggett ◽  
Sukyoung Lee

Abstract In the framework of the Lorenz energy cycle, the climatological and eddy life cycle characteristics of the generation of eddy available potential energy through Ekman pumping (EEPE) are evaluated using Interim European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA-Interim) data (1979–2011). EEPE exhibits an annual cycle that is maximized during a given hemisphere’s winter, with maximum values in the midtroposphere of the midlatitudes. Spectral analysis of the Southern Hemisphere storm track reveals that positive EEPE is associated with an anomalously small vertical phase tilt. A composite analysis of the Southern Hemisphere eddy life cycle reveals a maximum in EEPE that occurs after the peak eddy amplitude. Eddy life cycles during winter with large values of EEPE have higher values of eddy available potential energy and eddy kinetic energy than life cycles with small EEPE. However, baroclinic energy conversion remains unenhanced in life cycles with large values of EEPE. The lack of enhancement of baroclinic conversion is related to the small vertical phase tilt associated with positive EEPE. Instead, barotropic energy conversion is muted, and it is this muted barotropic decay that results in an amplification of eddy kinetic energy. There is no evidence of reflecting critical latitudes playing a role in this reduction of barotropic decay, as found in previous modeling studies. Rather, during Southern Hemisphere winter, this reduction coincides with the presence of a turning latitude on the equatorward side of the storm track.


2012 ◽  
Vol 42 (12) ◽  
pp. 2185-2205 ◽  
Author(s):  
Jin-Song von Storch ◽  
Carsten Eden ◽  
Irina Fast ◽  
Helmuth Haak ◽  
Daniel Hernández-Deckers ◽  
...  

Abstract This paper presents an estimate of the oceanic Lorenz energy cycle derived from a simulation forced by 6-hourly fluxes obtained from NCEP–NCAR reanalysis-1. The total rate of energy generation amounts to 6.6 TW, of which 1.9 TW is generated by the time-mean winds and 2.2 TW by the time-varying winds. The dissipation of kinetic energy amounts to 4.4 TW, of which 3 TW originate from the dissipation of eddy kinetic energy. The energy exchange between reservoirs is dominated by the baroclinic pathway and the pathway that distributes the energy generated by the time-mean winds. The former converts 0.7 to 0.8 TW mean available potential energy to eddy available potential energy and finally to eddy kinetic energy, whereas the latter converts 0.5 TW mean kinetic energy to mean available potential energy. This energy cycle differs from the atmospheric one in two aspects. First, the generation of the mean kinetic and mean available potential energy is each, to a first approximation, balanced by the dissipation. The interaction of the oceanic general circulation with mesoscale eddies is hence less crucial than the corresponding interaction in the atmosphere. Second, the baroclinic pathway in the ocean is facilitated not only by the surface buoyancy flux but also by the winds through a conversion of 0.5 TW mean kinetic energy to mean available potential energy. In the atmosphere, the respective conversion is almost absent and the baroclinic energy pathway is driven solely by the differential heating.


2021 ◽  
Vol 37 (3) ◽  
Author(s):  
V. S. Travkin ◽  
◽  
T. V. Belonenko ◽  

Purpose. The Lofoten Basin is one of the most energetic zones of the World Ocean characterized by high activity of mesoscale eddies. The study is aimed at analyzing different components of general energy in the basin, namely the mean kinetic and vortex kinetic energy calculated using the integral of the volume of available potential and kinetic energy of the Lofoten Vortex, as well as variability of these characteristics. Methods and Results. GLORYS12V1 reanalysis data for the period 2010–2018 were used. The mean kinetic energy and the eddy kinetic one were analyzed; and as for the Lofoten Vortex, its volume available potential and kinetic energy were studied. The mesoscale activity of eddies in winter is higher than in summer. Evolution of the available potential energy and kinetic energy of the Lofoten Vortex up to the 1000 m horizon was studied. It is shown that the vortex available potential energy exceeds the kinetic one by an order of magnitude, and there is a positive trend with the coefficient 0,23⋅1015 J/year. It was found that in the Lofoten Basin, the intermediate layer from 600 to 900 m made the largest contribution to the potential energy, whereas the 0–400 m layer – to kinetic energy. The conversion rates of the mean kinetic energy into the vortex kinetic one and the mean available potential energy into the vortex available potential one (barotropic and baroclinic instability) were analyzed. It is shown that the first type of transformation dominates in summer, while the second one is characterized by its increase in winter. Conclusions. The vertical profile shows that the kinetic energy of eddies in winter is higher than in summer. The available potential energy of a vortex is by an order of magnitude greater than the kinetic energy. An increase in the available potential energy is confirmed by a significant positive trend and by a decrease in the vortex Burger number. The graphs of the barotropic instability conversion rate demonstrate the multidirectional flows in the vortex zone with the dipole structure observed in a winter period, and the tripole one – in summer. The barotropic instability highest intensity is observed in summer. The baroclinic instability is characterized by intensification of the regime in winter that is associated with weakening of stratification in this period owing to winter convection.


2020 ◽  
Author(s):  
Remi Tailleux ◽  
Bethan Harris ◽  
Christopher Holloway ◽  
Pier-Luigi Vidale

<p>While it is well accepted that tropical cyclones (TCs) derive their energy from surface enthalpy fluxes over the ocean, there is still little understanding of the precise causes and effects by which the latter ends up as TC vortex kinetic energy. For example, Potential Intensity (PI) theory, which has been so far the main framework for predicting TC intensities, assumes a balance between the Carnot power input and the kinetic energy dissipated by surface friction, but says nothing of the detailed physical processes linking the two. A similar criticism pertains to the WISHE (Wind Induced Surface Heat Exchange) theory. To achieve a causal theory of TC intensification, the main difficulty is in linking the power input to kinetic energy production, rather than kinetic energy dissipation. Because kinetic energy is produced at the expense of available potential energy (APE), APE theory is arguably the most promising candidate framework for achieving a causal theory of TC intensification. However, in its current form, the usefulness of APE theory appears to be limited in a number of ways because of its reliance on a notional reference state of rest. First, APE production associated with standard reference states (i.e., horizontally averaged density field, density field of initial sounding, adiabatically sorted states, ...) is usually found to systematically overestimate the kinetic energy actually produced in ideal TC simulations, similarly as the Carnot theory of heat engines; moreover, the standard APE is only connected to vertical buoyancy forces, but says nothing of the radial forces required to drive the secondary circulation. To address these shortcomings, this work presents a new theory of available energy (AE) that is based on the use of an axisymmetric vortex reference state in gradient wind balance. This theory possesses the following advantages over previous frameworks:</p><p> </p><ul><li>The available energy (AE) thus constructed possesses both a mechanical and thermodynamic component. The thermodynamic component is analogous to the well-known Slantwise Convective Available Potential Energy (SCAPE), whereas the mechanical component is proportional to the anomalous azimuthal kinetic energy;</li> <li>The rate of AE production by surface enthalpy fluxes is found to be a very accurate predictor of the amount of potential energy actually converted into kinetic energy in idealised TC simulations based on the Rotunno and Emanuel (1986) axisymmetric model, although a few exceptions are found for cold SSTs;</li> <li>In addition to the expected thermodynamic efficiencies, the production term for AE also involves mechanical efficiencies predicting the fraction of the sinks/sources of angular momentum creating/destroying AE;</li> <li>The AE is related to a generalised buoyancy/inertial force that has both vertical and horizontal components; at low levels, such a generalised force has radially inward and vertically upward components, as required to drive the expected secondary circulation.</li> </ul><p>The new theory, therefore, appears to possess all the ingredients to form the basis for a causal theory of TC intensification.</p>


Sign in / Sign up

Export Citation Format

Share Document