scholarly journals Scaling Laws and Regime Transitions of Macroturbulence in Dry Atmospheres

2008 ◽  
Vol 65 (7) ◽  
pp. 2153-2173 ◽  
Author(s):  
Tapio Schneider ◽  
Christopher C. Walker

Abstract In simulations of a wide range of circulations with an idealized general circulation model, clear scaling laws of dry atmospheric macroturbulence emerge that are consistent with nonlinear eddy–eddy interactions being weak. The simulations span several decades of eddy energies and include Earth-like circulations and circulations with multiple jets and belts of surface westerlies in each hemisphere. In the simulations, the eddy available potential energy and the barotropic and baroclinic eddy kinetic energy scale linearly with each other, with the ratio of the baroclinic eddy kinetic energy to the barotropic eddy kinetic energy and eddy available potential energy decreasing with increasing planetary radius and rotation rate. Mean values of the meridional eddy flux of surface potential temperature and of the vertically integrated convergence of the meridional eddy flux of zonal momentum generally scale with functions of the eddy energies and the energy-containing eddy length scale, with a few exceptions in simulations with statically near-neutral or neutral extratropical thermal stratifications. Eddy energies scale with the mean available potential energy and with a function of the supercriticality, a measure of the near-surface slope of isentropes. Strongly baroclinic circulations form an extended regime in which eddy energies scale linearly with the mean available potential energy. Mean values of the eddy flux of surface potential temperature and of the vertically integrated eddy momentum flux convergence scale similarly with the mean available potential energy and other mean fields. The scaling laws for the dependence of eddy fields on mean fields exhibit a regime transition between a regime in which the extratropical thermal stratification and tropopause height are controlled by radiation and convection and a regime in which baroclinic entropy fluxes modify the extratropical thermal stratification and tropopause height. At the regime transition, for example, the dependence of the eddy flux of surface potential temperature and the dependence of the vertically integrated eddy momentum flux convergence on mean fields changes—a result with implications for climate stability and for the general circulation of an atmosphere, including its tropical Hadley circulation.

2021 ◽  
Vol 37 (3) ◽  
Author(s):  
V. S. Travkin ◽  
◽  
T. V. Belonenko ◽  

Purpose. The Lofoten Basin is one of the most energetic zones of the World Ocean characterized by high activity of mesoscale eddies. The study is aimed at analyzing different components of general energy in the basin, namely the mean kinetic and vortex kinetic energy calculated using the integral of the volume of available potential and kinetic energy of the Lofoten Vortex, as well as variability of these characteristics. Methods and Results. GLORYS12V1 reanalysis data for the period 2010–2018 were used. The mean kinetic energy and the eddy kinetic one were analyzed; and as for the Lofoten Vortex, its volume available potential and kinetic energy were studied. The mesoscale activity of eddies in winter is higher than in summer. Evolution of the available potential energy and kinetic energy of the Lofoten Vortex up to the 1000 m horizon was studied. It is shown that the vortex available potential energy exceeds the kinetic one by an order of magnitude, and there is a positive trend with the coefficient 0,23⋅1015 J/year. It was found that in the Lofoten Basin, the intermediate layer from 600 to 900 m made the largest contribution to the potential energy, whereas the 0–400 m layer – to kinetic energy. The conversion rates of the mean kinetic energy into the vortex kinetic one and the mean available potential energy into the vortex available potential one (barotropic and baroclinic instability) were analyzed. It is shown that the first type of transformation dominates in summer, while the second one is characterized by its increase in winter. Conclusions. The vertical profile shows that the kinetic energy of eddies in winter is higher than in summer. The available potential energy of a vortex is by an order of magnitude greater than the kinetic energy. An increase in the available potential energy is confirmed by a significant positive trend and by a decrease in the vortex Burger number. The graphs of the barotropic instability conversion rate demonstrate the multidirectional flows in the vortex zone with the dipole structure observed in a winter period, and the tripole one – in summer. The barotropic instability highest intensity is observed in summer. The baroclinic instability is characterized by intensification of the regime in winter that is associated with weakening of stratification in this period owing to winter convection.


2008 ◽  
Vol 21 (22) ◽  
pp. 5797-5806 ◽  
Author(s):  
Paul A. O’Gorman ◽  
Tapio Schneider

Abstract As the climate changes, changes in static stability, meridional temperature gradients, and availability of moisture for latent heat release may exert competing effects on the energy of midlatitude transient eddies. This paper examines how the eddy kinetic energy in midlatitude baroclinic zones responds to changes in radiative forcing in simulations with an idealized moist general circulation model. In a series of simulations in which the optical thickness of the longwave absorber is varied over a wide range, the eddy kinetic energy has a maximum for a climate with mean temperature similar to that of present-day earth, with significantly smaller values both for warmer and for colder climates. In a series of simulations in which the meridional insolation gradient is varied, the eddy kinetic energy increases monotonically with insolation gradient. In both series of simulations, the eddy kinetic energy scales approximately linearly with the dry mean available potential energy averaged over the baroclinic zones. Changes in eddy kinetic energy can therefore be related to the changes in the atmospheric thermal structure that affect the mean available potential energy.


2017 ◽  
Vol 47 (5) ◽  
pp. 1169-1187 ◽  
Author(s):  
Yang Yang ◽  
X. San Liang ◽  
Bo Qiu ◽  
Shuiming Chen

AbstractPrevious studies have found that the decadal variability of eddy kinetic energy (EKE) in the upstream Kuroshio Extension is negatively correlated with the jet strength, which seems counterintuitive at first glance because linear stability analysis usually suggests that a stronger jet would favor baroclinic instability and thus lead to stronger eddy activities. Using a time-varying energetics diagnostic methodology, namely, the localized multiscale energy and vorticity analysis (MS-EVA), and the MS-EVA-based nonlinear instability theory, this study investigates the physical mechanism responsible for such variations with the state estimate from the Estimating the Circulation and Climate of the Ocean (ECCO), Phase II. For the first time, it is found that the decadal modulation of EKE is mainly controlled by the barotropic instability of the background flow. During the high-EKE state, violent meanderings efficiently induce strong barotropic energy transfer from mean kinetic energy (MKE) to EKE despite the rather weak jet strength. The reverse is true in the low-EKE state. Although the enhanced meander in the high-EKE state also transfers a significant portion of energy from mean available potential energy (MAPE) to eddy available potential energy (EAPE) through baroclinic instability, the EAPE is not efficiently converted to EKE as the two processes are not well correlated at low frequencies revealed in the time-varying energetics. The decadal modulation of barotropic instability is found to be in pace with the North Pacific Gyre Oscillation but with a time lag of approximately 2 years.


2016 ◽  
Vol 56 ◽  
pp. 5.1-5.16 ◽  
Author(s):  
T. N. Krishnamurti ◽  
Ruby Krishnamurti ◽  
Anu Simon ◽  
Aype Thomas ◽  
Vinay Kumar

This chapter distinguishes the mechanism of tropical convective disturbances, such as a hurricane, from that of the Madden–Julian oscillation (MJO). The hurricane is maintained by organized convection around the azimuth. In a hurricane the organization of convection, the generation of eddy available potential energy, and the transformation of eddy available potential energy into eddy kinetic energy all occur on the scale of the hurricane and these are called “in-scale processes,” which invoke quadratic nonlinearity. The MJO is not a hurricane type of disturbance; organized convection simply does not drive an MJO in the same manner. The maintenance of the MJO is more akin to a multibody problem where the convection is indeed organized on scales of tropical synoptic disturbances that carry a similar organization of convection and carry similar roles for the generation of eddy available potential energy and its conversion to the eddy kinetic energy for their maintenance. The maintenance of the MJO is a scale interaction problem that comes next, where pairs of synoptic-scale disturbances are shown to interact with a member of the MJO time scale, thus contributing to its maintenance. This chapter illustrates the organization of convection, synoptic-scale energetics, and nonlinear scale interactions to show the above aspects for the mechanism of the MJO.


2015 ◽  
Vol 45 (10) ◽  
pp. 2522-2543 ◽  
Author(s):  
Alberto Scotti

AbstractThis paper uses the energetics framework developed by Scotti and White to provide a critical assessment of the widely used Thorpe-scale method, which is used to estimate dissipation and mixing rates in stratified turbulent flows from density measurements along vertical profiles. This study shows that the relevant displacement scale in general is not the rms value of the Thorpe displacement. Rather, the displacement field must be Reynolds decomposed to separate the mean from the turbulent component, and it is the turbulent component that ought to be used to diagnose mixing and dissipation. In general, the energetics of mixing in an overall stably stratified flow involves potentially complex exchanges among the available potential energy and kinetic energy associated with the mean and turbulent components of the flow. The author considers two limiting cases: shear-driven mixing, where mixing comes at the expense of the mean kinetic energy of the flow, and convective-driven mixing, which taps the available potential energy of the mean flow to drive mixing. In shear-driven flows, the rms of the Thorpe displacement, known as the Thorpe scale is shown to be equivalent to the turbulent component of the displacement. In this case, the Thorpe scale approximates the Ozmidov scale, or, which is the same, the Thorpe scale is the appropriate scale to diagnose mixing and dissipation. However, when mixing is driven by the available potential energy of the mean flow (convective-driven mixing), this study shows that the Thorpe scale is (much) larger than the Ozmidov scale. Using the rms of the Thorpe displacement overestimates dissipation and mixing, since the amount of turbulent available potential energy (measured by the turbulent displacement) is only a fraction of the total available potential energy (measured by the Thorpe scale). Corrective measures are discussed that can be used to diagnose mixing from knowledge of the Thorpe displacement. In a companion paper, Mater et al. analyze field data and show that the Thorpe scale can indeed be much larger than the Ozmidov scale.


2019 ◽  
Vol 869 ◽  
pp. 214-237
Author(s):  
Pranav Puthan ◽  
Masoud Jalali ◽  
Vamsi K. Chalamalla ◽  
Sutanu Sarkar

Turbulence and mixing in a near-bottom convectively driven flow are examined by numerical simulations of a model problem: a statically unstable disturbance at a slope with inclination $\unicode[STIX]{x1D6FD}$ in a stable background with buoyancy frequency $N$ . The influence of slope angle and initial disturbance amplitude are quantified in a parametric study. The flow evolution involves energy exchange between four energy reservoirs, namely the mean and turbulent components of kinetic energy (KE) and available potential energy (APE). In contrast to the zero-slope case where the mean flow is negligible, the presence of a slope leads to a current that oscillates with $\unicode[STIX]{x1D714}=N\sin \unicode[STIX]{x1D6FD}$ and qualitatively changes the subsequent evolution of the initial density disturbance. The frequency, $N\sin \unicode[STIX]{x1D6FD}$ , and the initial speed of the current are predicted using linear theory. The energy transfer in the sloping cases is dominated by an oscillatory exchange between mean APE and mean KE with a transfer to turbulence at specific phases. In all simulated cases, the positive buoyancy flux during episodes of convective instability at the zero-velocity phase is the dominant contributor to turbulent kinetic energy (TKE) although the shear production becomes increasingly important with increasing  $\unicode[STIX]{x1D6FD}$ . Energy that initially resides wholly in mean available potential energy is lost through conversion to turbulence and the subsequent dissipation of TKE and turbulent available potential energy. A key result is that, in contrast to the explosive loss of energy during the initial convective instability in the non-sloping case, the sloping cases exhibit a more gradual energy loss that is sustained over a long time interval. The slope-parallel oscillation introduces a new flow time scale $T=2\unicode[STIX]{x03C0}/(N\sin \unicode[STIX]{x1D6FD})$ and, consequently, the fraction of initial APE that is converted to turbulence during convective instability progressively decreases with increasing $\unicode[STIX]{x1D6FD}$ . For moderate slopes with $\unicode[STIX]{x1D6FD}<10^{\circ }$ , most of the net energy loss takes place during an initial, short ( $Nt\approx 20$ ) interval with periodic convective overturns. For steeper slopes, most of the energy loss takes place during a later, long ( $Nt>100$ ) interval when both shear and convective instability occur, and the energy loss rate is approximately constant. The mixing efficiency during the initial period dominated by convectively driven turbulence is found to be substantially higher (exceeds 0.5) than the widely used value of 0.2. The mixing efficiency at long time in the present problem of a convective overturn at a boundary varies between 0.24 and 0.3.


2015 ◽  
Vol 45 (4) ◽  
pp. 1103-1120 ◽  
Author(s):  
Dujuan Kang ◽  
Enrique N. Curchitser

AbstractA detailed energetics analysis of the Gulf Stream (GS) and associated eddies is performed using a high-resolution multidecadal regional ocean model simulation. The energy equations for the time-mean and time-varying flows are derived as a theoretical framework for the analysis. The eddy–mean flow energy components and their conversions show complex spatial distributions. In the along-coast region, the cross-stream and cross-bump variations are seen in the eddy–mean flow energy conversions, whereas in the off-coast region, a mixed positive–negative conversion pattern is observed. The local variations of the eddy–mean flow interaction are influenced by the varying bottom topography. When considering the domain-averaged energetics, the eddy–mean flow interaction shows significant along-stream variability. Upstream of Cape Hatteras, the energy is mainly transferred from the mean flow to the eddy field through barotropic and baroclinic instabilities. Upon separating from the coast, the GS becomes highly unstable and both energy conversions intensify. When the GS flows into the off-coast region, an inverse conversion from the eddy field to the mean flow dominates the power transfer. For the entire GS region, the mean current is intrinsically unstable and transfers 28.26 GW of kinetic energy and 26.80 GW of available potential energy to the eddy field. The mesoscale eddy kinetic energy is generated by mixed barotropic and baroclinic instabilities, contributing 28.26 and 9.15 GW, respectively. Beyond directly supplying the barotropic pathway, mean kinetic energy also provides 11.55 GW of power to mean available potential energy and subsequently facilitates the baroclinic instability pathway.


MAUSAM ◽  
2021 ◽  
Vol 60 (4) ◽  
pp. 427-436
Author(s):  
SOMENATH DUTTA ◽  
U. S. DE ◽  
SUNITHA DEVI

Advance of southwest monsoon, after its onset, often gets stalled for a week or more causing concern to the farmers and other community whose activities are weather dependent. The present study on the energetics aspect of hiatus in the advance of southwest monsoon over India aims at understanding the dynamical reasons for this. Nine cases of hiatus of duration more than 10 days during 1982-2006 have been selected. For each hiatus case, different energy terms, their generation and conversion among different terms have been computed during the hiatus period and also during the pre-hiatus pentad over a limited region between 65° E to 90° E, 5° N to 30° N. These computations are based on NCEP 2.5° × 2.5°  re-analysed daily composite data during different hiatus period and during corresponding pre-hiatus pentad.                 From this study it is found that :   (i)     In most of the cases there is a reduction in the generation of zonal available potential energy [G(AZ)] during hiatus period compared to pre-hiatus pentad.   (ii)    Drop in the conversion from zonal available potential energy to zonal kinetic energy [C(AZ, KZ)] during hiatus period has been observed in most of the cases.   (iii)   In most of the cases there is a reduction in zonal kinetic energy (KZ) and in eddy kinetic energy (KE) during hiatus period compared to pre-hiatus pentad.


2014 ◽  
Vol 71 (8) ◽  
pp. 2944-2961 ◽  
Author(s):  
Cory Baggett ◽  
Sukyoung Lee

Abstract In the framework of the Lorenz energy cycle, the climatological and eddy life cycle characteristics of the generation of eddy available potential energy through Ekman pumping (EEPE) are evaluated using Interim European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA-Interim) data (1979–2011). EEPE exhibits an annual cycle that is maximized during a given hemisphere’s winter, with maximum values in the midtroposphere of the midlatitudes. Spectral analysis of the Southern Hemisphere storm track reveals that positive EEPE is associated with an anomalously small vertical phase tilt. A composite analysis of the Southern Hemisphere eddy life cycle reveals a maximum in EEPE that occurs after the peak eddy amplitude. Eddy life cycles during winter with large values of EEPE have higher values of eddy available potential energy and eddy kinetic energy than life cycles with small EEPE. However, baroclinic energy conversion remains unenhanced in life cycles with large values of EEPE. The lack of enhancement of baroclinic conversion is related to the small vertical phase tilt associated with positive EEPE. Instead, barotropic energy conversion is muted, and it is this muted barotropic decay that results in an amplification of eddy kinetic energy. There is no evidence of reflecting critical latitudes playing a role in this reduction of barotropic decay, as found in previous modeling studies. Rather, during Southern Hemisphere winter, this reduction coincides with the presence of a turning latitude on the equatorward side of the storm track.


Sign in / Sign up

Export Citation Format

Share Document