scholarly journals Analysis of rainfall and temperatures for climatic trend in Kullu valley

MAUSAM ◽  
2021 ◽  
Vol 62 (1) ◽  
pp. 77-84
Author(s):  
SUMAN JANGRA ◽  
MOHAN SINGH

Kullu valley is famous for tourism and agricultural activities but recently it has assumed importance for studies on climatic variability. There is an increasing trend in minimum and maximum temperatures but no trend in annual rainfall. The slope of regression line for annual rainfall was negative at Bajaura and positive at Katrain but both were non significant. The coefficient of variation for annual rainfall (22 %) and for monsoon rainfall (33 %) was showing the consistence of annual and southwest monsoon rainfall but, a shifting of monsoon from its wettest months was observed. The rainfall was most variable during post monsoon season at Bajaura and in winter at Katrain. The decreasing rate in rainfall was higher during the recent period than the decadal period. Monthly, seasonal and annual average minimum temperature was showing decreasing trend at Bajaura and an increasing trend at Katrain, but, maximum temperature is increasing at both the stations. The minimum temperature was most variable during the winter season whereas the maximum temperature was during summer. Higher the altitude higher the variability in minimum temperature but lower the altitude higher the variability in maximum temperature. Both maximum and minimum temperatures were showing a higher rate of increasing during the recent period.

2018 ◽  
Vol 1 (4) ◽  
Author(s):  
Sujeet Kumar ◽  
Shakti Suryavanshi

A trend analysis was performed for historic (1901-2002) climatic variables (Rainfall, Maximum Temperature and Minimum Temperature) of Uttarakhand State located in Northern India. In the serially independent climatic variables, Mann-Kendall test (MK test) was applied to the original sample data. However, in the serially correlated series, prewhitening is utilized before employing the MK test. The results of this study indicated a declining trend of rainfall in monsoon season for seven out of thirteen districts of Uttarakhand state. However, an increasing trend was observed in Haridwar and Udhamsingh Nagar districts for summer season rainfall. For maximum and minimum temperature, a few districts exhibited a declining trend in monsoon season whereas many districts exhibited an increasing trend in winter and summer season. Mountain dominated areas (as Uttarakhand state) are specific ecosystems, distinguished by their diversity, sensitivity and intricacy. Thus the variability of rainfall and temperature has a severe and rapid impact on mountainous ecosystems. Nevertheless, mountains have significant impacts on hydrology, which may further threaten populations living in the mountain areas as well as in adjacent, lowland regions.


Author(s):  
S. Sridhara ◽  
Pradeep Gopakkali ◽  
R. Nandini

Aims: To know the rainfall and temperature trend for all the districts of Karnataka state to develop suitable coping mechanisms for changing weather conditions during the cropping season. Study Design: The available daily data of rainfall (1971-2011) and minimum and maximum temperature (1971-2007) for each district was collected from NICRA-ICAR website. A non-parametric model such as the Mann-Kendall (MK) test complemented with Sen’s slope estimator was used to determine the magnitude of the trend. Place and Duration of Study: The rainfall data of 41 years (1971-2011) and temperature data of 37 years (1971-2007) was collected for all 27 districts of Karnataka. Methodology: Basic statistics related to rainfall like mean, standard deviation (SD), the coefficient of variation (CV) and the percentage contribution to annual rainfall were computed for monthly and season-wise. Mann-Kendall test was used to detect trend for rainfall as well as temperature. Results: An increasing trend in rainfall during winter, monsoon and annual basis for all most all the districts of Karnataka and decreasing trend of rainfall during pre and post-monsoon season was noticed. An early cessation of rainfall during September month in all most all the districts of Karnataka was observed. Similarly, monthly mean, maximum and the minimum temperature had shown an increasing trend over the past 37 years for all the districts of Karnataka. Conclusion: The more variation in rainfall during the pre-monsoon season was observed, which is more important for land preparation and other operations. The increasing trend of maximum and minimum temperature throughout the year may often cause a reduction in crop yield. It is necessary to change crops with its short duration varieties in order to avoid late season drought.


2021 ◽  
Author(s):  
Daniel Assefa ◽  
Mesfin Mengistu

Abstract BackgroundThe paper focus on time series trend and variability analysis of observed rainfall and temperature records from 16 stations during 1985-2015. ResultsBoth the summer and annual rainfall have an increasing trend but not statistically significant. Regards to variability, low to very high levels of variability were recorded according to the seasons and annual rainfall, whereas, moderate to extremely high levels of variability were observed. The result of the Mann Kendall test portrays that the mean minimum temperature was raised by 0.05 oC, while the maximum temperature was increased rose by 0.03 oC/30 years. The monthly maximum temperature also shows an increasing trend with the lowest record during August (22.05 oC) and the highest in the March (26.49 oC) except in the month of November and December. Similarly, an increasing trend was observed with a mean monthly minimum temperature with the lowest mean of 8.42Co in December and the highest mean of 11.12 oC recorded in April. Besides, a low level of variability was seen both in the case of minimum and maximum temperature were observed in all months. ConclusionsTherefore, since the observed trends of both temperature and total rainfall show abnormal shifts, there is an urgent need for policymakers to design systematic planning and management activities to rain-fed agriculture.


2019 ◽  
Vol 14 (2) ◽  
pp. 312-319
Author(s):  
Vaibhav Deoli ◽  
Saroj Rana

The present study is mainly focused on to detection of changing trend in rainfall and temperature for Udaipur district situated in the Rajasthan state of India. The district situated in the western part of India which obtained less rainfall as compared with the average rainfall of India. In the present article, the approach has been tried to analysis to detect rainfall trend, maximum temperature trend and minimum temperature trend for the area. For this daily rainfall data of 39 years (1975 to 2013) add seasonally and the temperature has been calculated by averaging of daily temperature for a period of 39 years. For determining the trend the year has been shared out into four seasons like the winter season, pre-monsoon season, monsoon season and post-monsoon season. To obtained magnitude of trend San’s slope estimator test has been used and for significance in trend Mann-Kendall statistics test has been applied. The results obtained for the study show significantly decreasing rainfall trend for the season winter and season post-monsoon whereas pre-monsoon and monsoon show increasing rainfall trend. The maximum temperature of pre-monsoon and monsoon months shows a significantly increasing trend whereas, in minimum temperature, winter season and pre-monsoon season shows an increasing trend which is significant at 10% level of significance and post-monsoon shows a decreasing trend which is also significant at 10% level of significance.


2013 ◽  
Vol 8 (1-2) ◽  
pp. 49-54
Author(s):  
Saon Banerjee ◽  
Asis Mukherj ◽  
Apurba Mukhopadhayal ◽  
B Saikia ◽  
S Bandyaopadhaya ◽  
...  

Maximum temperature, minimum temperature and rainfall data of Bankura (1992-2007) and Canning (1960-2006) were analyzed for assessing climatic trend and agro-climatic characterization of red-lateritic and coastal Zones of West Bengal respectively. These two zones are the most vulnerable regions to climate change in West Bengal, hence selected for the present study. While average values of annual maximum temperature and annual minimum temperature were used for climatic trend analysis, no definite trend was observed. So, maximum temperature of the hottest month and minimum temperature of the coldest month were used for detecting climatic trend. The maximum temperature shows positive trend for both the stations. An increasing trend of annual rainfall was also observed. In case of agro-climatic characterization the agricultural draught, meteorological draught, seasonal rainfall and rainfall probability using Markov-chain model were analyzed for the said two stations. Kharif crops of Bankura encountered two years (2000 & 2005) agricultural draught within 2000 -2007, whereas kharif crops of Canning encountered agricultural draught in 2006 within the said period. Likewise, the deviation of seasonal rainfall and probability of two consecutive wet weeks with different levels (10, 20,30,40,50 and 60 mm) of weekly total rainfall was worked out. DOI: http://dx.doi.org/10.3329/jsf.v8i1-2.14619 J. Sci. Foundation, 8(1&2): 49-54, June-December 2010


Atmosphere ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 67
Author(s):  
Helen Teshome ◽  
Kindie Tesfaye ◽  
Nigussie Dechassa ◽  
Tamado Tana ◽  
Matthew Huber

Smallholder farmers in East and West Hararghe zones, Ethiopia frequently face problems of climate extremes. Knowledge of past and projected climate change and variability at local and regional scales can help develop adaptation measures. A study was therefore conducted to investigate the spatio-temporal dynamics of rainfall and temperature in the past (1988–2017) and projected periods of 2030 and 2050 under two Representative Concentration Pathways (RCP4.5 and RCP8.5) at selected stations in East and West Hararghe zones, Ethiopia. To detect the trends and magnitude of change Mann–Kendall test and Sen’s slope estimator were employed, respectively. The result of the study indicated that for the last three decades annual and seasonal and monthly rainfall showed high variability but the changes are not statistically significant. On the other hand, the minimum temperature of the ‘Belg’ season showed a significant (p < 0.05) increment. The mean annual minimum temperature is projected to increase by 0.34 °C and 2.52 °C for 2030, and 0.41 °C and 4.15 °C for 2050 under RCP4.5 and RCP8.5, respectively. Additionally, the mean maximum temperature is projected to change by −0.02 °C and 1.14 °C for 2030, and 0.54 °C and 1.87 °C for 2050 under RCP4.5 and RCP 8.5, respectively. Annual rainfall amount is also projected to increase by 2.5% and 29% for 2030, and 12% and 32% for 2050 under RCP4.5 and RCP 8.5, respectively. Hence, it is concluded that there was an increasing trend in the Belg season minimum temperature. A significant increasing trend in rainfall and temperature are projected compared to the baseline period for most of the districts studied. This implies a need to design climate-smart crop and livestock production strategies, as well as an early warning system to counter the drastic effects of climate change and variability on agricultural production and farmers’ livelihood in the region.


Author(s):  
N. Navatha ◽  
G. Sreenivas ◽  
R. Umareddy

Aims: To investigate and assess the significance of the potential trend of two variables viz. rainfall, temperature in Jagtial district of Telangana state. Place and Duration of Study: Data of Daily rainfall and temperature data of 39 years (1980-2019) collected from the meteorological observatory at Regional Agricultural Research Station, Polasa, Jagtial. Methodology: In this study, trend analysis has been carried out on monthly, seasonal and annual basis using the data period between 1980 to 2019 for rainfall and temperature. Mann-Kendall test and Sen’s slope estimate test were applied to identify the existing trend direction and magnitude of change over time. Results: The rainfall seasonal trend analysis indicates that pre-monsoon, monsoon and post-monsoon and winter period showed a negative rainfall trend with z statistics of-1.47, -2.51, -0.55 and-1.38 respectively. However, the annual rainfall showed a negative trend with a z value of -2.53. In the case of Sen’s slope shows that negative trend in monthly, seasonal and annual rainfall.  But the significant rising trend of monthly, seasonal average temperature is noticed from 1980 onwards. The annual average maximum temperature in the Jagtial showed an increasing trend (Z value +5.03). An increasing trend in the all seasons will lead to increase in annual mean temperature. The results of minimum temperature shows a rising trend and falling trend observed Monthly. However annual mean minimum temperature in the Jagtial District showed an increasing trend (Z value 0.10). In the case of maximum temperature for the observed period, it showed rising trend (Sen's slope = 0.63) while the minimum temperature trend showed no trend (Sen's slope = 0.02). Conclusion: Time series was carried out using nonparametric M–K test and Sen's slope estimator, which are widely used tests for conducting trend analysis. Therefore, its take into think about the rainfall variability in particular and temperature variability in general of the area into their climate change adaptation approach.


Author(s):  
Raj Bahadur ◽  
R. K. Jaiswal ◽  
A. K. Nema ◽  
Anshu Gangwar ◽  
Sandeep Kumar

Trend analysis is performed to find the pattern that prevails in Nagwan watershed area located in Hazaribagh district of Jharkhand (India) having very high average annual rainfall in the range of 1146 mm. The study aims to investigated the impacts of global warming by examine precipitation and temperature change over a period. Non-parametric MK test and Sen’s Slope estimator were used to assess the trend in long-term rainfall and temperature time series (1981-2019). The analysis has been carried out on monthly, seasonal and annual scale to identify meso-scale climate change effect on hydrological regime. The precipitation in the summer showed an increasing trend (Z value +1.67) and there was increasing trend in the seasonal rainfall which influences the total water availability in the watershed. There was increase in minimum temperature during summer season which shows the impact of global warming and may results in increasing the duration of the summer season. The annual average minimum temperature in the watershed showed an increasing trend (Z value +2.08) at 0.05 level of significance indicated hot nights in the summer. The annual average maximum temperature in the watershed showed a decreasing trend (Z value -1.26). Fluctuation and change in trend of rainfall and temperature possess potential risk hence it is important to understand and identify the pattern of rainfall and temperature for assessing impact of climate change and it is necessary to adopt appropriate steps for agriculture crop planning and improving farmer’s capability to cope with challenging situations due to environmental and climate changes.


2014 ◽  
Vol 6 (2) ◽  
pp. 371-376 ◽  
Author(s):  
Hijam S. Devi ◽  
D. R. Sharma

Seasonal abundance of citrus psylla (Diaphorina citri) Kuwayama was studied on Kinnow mandarin under Punjab conditions during 2012 and 2013. Population of D. citri was present throughout the year but only adults found surviving during December and February. There was no nymphal population when maximum temperature was > 39°C or < 7°C. Two population peaks of nymphs wer e observed, first in April-May and second in August- September. Thereafter, there was abrupt decline in nymphal population during June and July during both the years when the weather conditions i.e. maximum, minimum temperature (°C), relative humidity (%), rainfall (m m) and sunshine (hrs) ranged from 24.4-44, 22.4-31.8, 25.5-100, 0-108.0 and 0-13.5, respectively. Highest peaks of adult were found during May followed by June. With the decrease in temperature from the end of September, the population of D. citri started to decrease and reached its lowest during winter season. Correlation analysis for both the years indicated that maximum and minimum temperature, sunshine and rainfall were positively correlated with nymphal, adult and mixed population but the effect of rainfall on adult population was non-significant, while relative humidity was negatively correlated. The study is useful to find out the weak links of psyllid populations in relation to abiotic factors and that could be exploited to curb its infestation and disease transmission.


2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Miyuru B. Gunathilake ◽  
Yasasna V. Amaratunga ◽  
Anushka Perera ◽  
Imiya M. Chathuranika ◽  
Anura S. Gunathilake ◽  
...  

Water resources in Northern Thailand have been less explored with regard to the impact on hydrology that the future climate would have. For this study, three regional climate models (RCMs) from the Coordinated Regional Downscaling Experiment (CORDEX) of Coupled Model Intercomparison Project 5 (CMIP5) were used to project future climate of the upper Nan River basin. Future climate data of ACCESS_CCAM, MPI_ESM_CCAM, and CNRM_CCAM under Representation Concentration Pathways RCP4.5 and RCP8.5 were bias-corrected by the linear scaling method and subsequently drove the Hydrological Engineering Center-Hydrological Modeling System (HEC-HMS) to simulate future streamflow. This study compared baseline (1988–2005) climate and streamflow values with future time scales during 2020–2039 (2030s), 2040–2069 (2050s), and 2070–2099 (2080s). The upper Nan River basin will become warmer in future with highest increases in the maximum temperature of 3.8°C/year for MPI_ESM and minimum temperature of 3.6°C/year for ACCESS_CCAM under RCP8.5 during 2080s. The magnitude of changes and directions in mean monthly precipitation varies, with the highest increase of 109 mm for ACESSS_CCAM under RCP 4.5 in September and highest decrease of 77 mm in July for CNRM, during 2080s. Average of RCM combinations shows that decreases will be in ranges of −5.5 to −48.9% for annual flows, −31 to −47% for rainy season flows, and −47 to −67% for winter season flows. Increases in summer seasonal flows will be between 14 and 58%. Projection of future temperature levels indicates that higher increases will be during the latter part of the 20th century, and in general, the increases in the minimum temperature will be higher than those in the maximum temperature. The results of this study will be useful for river basin planners and government agencies to develop sustainable water management strategies and adaptation options to offset negative impacts of future changes in climate. In addition, the results will also be valuable for agriculturists and hydropower planners.


Sign in / Sign up

Export Citation Format

Share Document