scholarly journals Wireless communication technologies for the Internet of Things

2021 ◽  
Vol 1 (1) ◽  
pp. 1-14
Author(s):  
Alem Čolaković ◽  
Adisa Hasković Džubur ◽  
Bakir Karahodža

Internet of Things (IoT) is the inter-networking paradigm based on many processes such as identifying, sensing, networking and computation. An IoT technology stack provides seamless connectivity between various physical and virtual objects. The increasing number of IoT applications leads to the issue of transmitting, storing, and processing a large amount of data. Therefore, it is necessary to enable a system capable to handle the growing traffic requirements with the required level of QoS (Quality of Service). IoT devices become more complex due to the various components such as sensors and network interfaces. The IoT environment is often demanding for mobile power source, QoS, mobility, reliability, security, and other requirements. Therefore, new IoT technologies are required to overcome some of these issues. In recent years new wireless communication technologies are being developed to support the development of new IoT applications. This paper provides an overview of some of the most widely used wireless communication technologies used for IoT applications.

Author(s):  
Mahmoud Elkhodr ◽  
Seyed Shahrestani ◽  
Hon Cheung

The Internet of Things (IoT) brings connectivity to about every objects found in the physical space. It extends connectivity not only to computer and mobile devices but also to everyday objects. From connected fridges, cars and cities, the IoT creates opportunities in numerous domains. This chapter briefly surveys some IoT applications and the impact the IoT could have on societies. It shows how the various application of the IoT enhances the overall quality of life and reduces management and costs in various sectors.


Electronics ◽  
2018 ◽  
Vol 7 (11) ◽  
pp. 309 ◽  
Author(s):  
Hind Bangui ◽  
Said Rakrak ◽  
Said Raghay ◽  
Barbora Buhnova

Cloud computing has significantly enhanced the growth of the Internet of Things (IoT) by ensuring and supporting the Quality of Service (QoS) of IoT applications. However, cloud services are still far from IoT devices. Notably, the transmission of IoT data experiences network issues, such as high latency. In this case, the cloud platforms cannot satisfy the IoT applications that require real-time response. Yet, the location of cloud services is one of the challenges encountered in the evolution of the IoT paradigm. Recently, edge cloud computing has been proposed to bring cloud services closer to the IoT end-users, becoming a promising paradigm whose pitfalls and challenges are not yet well understood. This paper aims at presenting the leading-edge computing concerning the movement of services from centralized cloud platforms to decentralized platforms, and examines the issues and challenges introduced by these highly distributed environments, to support engineers and researchers who might benefit from this transition.


2018 ◽  
Vol 38 (1) ◽  
pp. 121-129 ◽  
Author(s):  
Pablo Antonio Pico Valencia ◽  
Juan A. Holgado-Terriza ◽  
Deiver Herrera-Sánchez ◽  
José Luis Sampietro

Recently, the scientific community has demonstrated a special interest in the process related to the integration of the agent-oriented technology with Internet of Things (IoT) platforms. Then, it arises a novel approach named Internet of Agents (IoA) as an alternative to add an intelligence and autonomy component for IoT devices and networks. This paper presents an analysis of the main benefits derived from the use of the IoA approach, based on a practical point of view regarding the necessities that humans demand in their daily life and work, which can be solved by IoT networks modeled as IoA infrastructures. It has been presented 24 study cases of the IoA approach at different domains ––smart industry, smart city and smart health wellbeing–– in order to define the scope of these proposals in terms of intelligence and autonomy in contrast to their corresponding generic IoT applications.


2021 ◽  
Vol 9 (1) ◽  
pp. 17-28
Author(s):  
Siddhartha Vadlamudi

The evolvement of IT has open new doors in connecting many devices to the worldwide web that successively produce data around the physical setting using the IoT. However, the system of message turns out to be slightly intricate in human specialization-internet of things communication for the reason that the IoT is a system including diverse objects transferring data This study examines the hypothetical pathway by which the changes in source attribution that is multiple against single and specialization that is multi-functionality against single functionality of IoT devices affect the quality of human- internet of things interaction. The result from the study obtained from 80 participants that took part in the experiment shows that multiple source attribution improves the condition of information basically for the low-involvement people supports further probes the multiple source effects. However, this study recommends improvement of attribution source and human specialization-IoT.


Author(s):  
Rahul Verma

The internet of things (IoT) is the new buzzword in technological corridors with most technology companies announcing a smart device of sorts that runs on internet of things (IoT). Cities around the world are getting “smarter” every day through the implementation of internet of things (IoT) devices. Cities around the world are implementing individual concepts on their way to becoming smart. The services are automated and integrated end to end using internet of things (IoT) devices. The chapter presents an array of internet of things (IoT) applications. Also, cyber physical systems are becoming more vulnerable since the internet of things (IoT) attacks are common and threatening the security and privacy of such systems. The main aim of this chapter is to bring more research in the application aspects of smart internet of things (IoT).


Author(s):  
Yong Kyu Lee

This chapter reviews the internet of things (IoT) as a key component of a smart city and how it is applied to consumers' daily lives and business. The IoT is a part of information and communication technology (ICT) and is considered a powerful means to improve consumers' quality of life. The “thing” could be any object which has internet capability, such as wearable devices and smart TVs/phones/speakers. Several studies have identified driving factors that have led consumers to adopting them, but also concerns of consumers' resistance to IoT devices. The three major fields of application of IoT technologies were selected to review the role of the IoT in consumers' daily lives and business.


Author(s):  
Kamalendu Pal

The internet of things (IoT) is ushering a new age of technology-driven automation of information systems into the manufacturing industry. One of the main concerns with IoT systems is the lack of privacy and security preserving schemes for controlling access and ensuring the safety of the data. Many security issues arise because of the centralized architecture of IoT-based information systems. Another concern is the lack of appropriate authentication and access control schemes to moderate the access to information generated by the IoT devices in the manufacturing industry. Hence, the question that arises is how to ensure the identity of the manufacturing machinery or the communication nodes. This chapter presents the advantages of blockchain technology to secure the operation of the modern manufacturing industry in a trustless environment with IoT applications. The chapter reviews the challenges and threats in IoT applications and how integration with blockchain can resolve some of the manufacturing enterprise information systems (EIS).


Telecom IT ◽  
2019 ◽  
Vol 7 (3) ◽  
pp. 20-25
Author(s):  
Y. Avakyan ◽  
R. Kirichek ◽  
V. Kulik

This paper discusses methods for testing data channels under a functional load of traffic generated by devices and applications of the Internet of things. The research of data channels is carried out according to the following quality of service parameters: throughput, network latency, network jitter, packet loss percentage. To measure these parameters, it is proposed to use the following types of testing: stress testing, benchmark testing. A model network including devices and application of the Internet of things was developed to define functional load models. The considered methods can be used to develop sys-tems for testing data channels of the Internet of things.


2021 ◽  
Author(s):  
Alexander Valach ◽  
Dominik Macko

<div>Number of embedded devices connected to the Internet is rapidly increasing, especially in the era of the Internet of Things (IoT). The growing number of IoT devices communicating wirelessly causes a communication-parameters selection problem, implying the increasing number of communication collisions. Multiple factors of IoT networks signify this problem, such as inability to communication-channel listening prior to the transmission (due to longer distances), energy constrains (due to inability of powering devices from the grid), or limitation of duty cycle and high interference (due to usage of unlicensed band in communication technologies). This article is focused on alleviating this problem in LoRa networks, which is one of the most promising technology for long-range and low-power</div><div>communication. We utilize the existing LoRa@FIIT protocol to achieve energy-efficient communication. The scalability of the LoRa network is increased by modifying the communication-parameters selection algorithm. By ensuring of quality of service mechanism at each node in the infrastructure, the application domain of the proposed architecture is widened. The simulation-based experimental results showed a significantly reduced number of collisions for mobile nodes, which reduces the channel congestion and the wasted energy by retransmissions.</div>


Sign in / Sign up

Export Citation Format

Share Document