scholarly journals Seismic hazard estimates for the Auckland area, and their design and construction implications

Author(s):  
David J. Dowrick

Revised estimates of the return periods of Modified Mercalli (MM) intensity for Auckland and Northland, arising from a revision of the attenuation of intensity in New Zealand, and latest data and views on the local seismicity and geology, represent considerable reductions in the hazard given in Smith and Berryman's seismic hazard model of New Zealand. The revised levels are MM6 and MM7 for 150 and 1200 year return periods. This implies that most structures and plant in Auckland and Northland could have much simpler and less onerous earthquake resistant design and construction than required by current codes. This simpler approach would be significantly cheaper for older so-called "earthquake risk buildings" as well as new construction.

Author(s):  
David J. Dowrick ◽  
David A. Rhoades

This paper describes an analysis of costs of damage to non-domestic buildings (all tow rise) in the Mw = 6.6 Edgecumbe New Zealand earthquake of 2 March 1987. The damage cost for each building was converted to a damage ratio by dividing it by the replacement value of that building. For the MM7 and MM9 intensity zones, the mean values and statistical distributions of these damage ratios were then found, the lognormal distribution fitting the data well. The data was then divided into subsets according to selected classes of construction, and the vulnerabilities of these classes were measured and compared in terms of their mean damage ratios and the associated 95% confidence limits. The classes of building examined included classifications by era of design, number of storeys, materials of construction, and building use. Valuable insights into earthquake resistant design and earthquake risk assessment parameters were obtained through the differences observed between classes, notably significant reductions in the vulnerability of buildings associated with improved ductility provisions.


2011 ◽  
Vol 9 (2) ◽  
pp. 231-240
Author(s):  
Slavko Zdravkovic ◽  
Biljana Mladenovic ◽  
Dragan Zlatkov

Criteria that are adopted in earthquake resistant design of pipelines and gas lines have to take into account seismic movements and seismic generated forces that are of significantly high probability level of appearance along the length of pipeline. A choice of criteria has to include an acceptable level of seismic hazard, while design criteria should be calculated. Seismic hazard is defined as a part of natural hazard and means probability of appearance of earthquake of corresponding characteristics in certain time and place. For design needs and calculation of influences caused by seismic forces the most important is seismic hazard of maximal horizontal acceleration due to ground vibration during earthquake. The methodology of seismic hazard calculation as base for micro seismic zoning is presented in the paper. It is shown calculation of seismic hazard of maximal horizontal acceleration due to ground vibration that is applied for 985 points at the territory of Republic of Serbia, based on which maps for return periods of 50 and 200 years are drawn.


2016 ◽  
Vol 87 (6) ◽  
pp. 1311-1318 ◽  
Author(s):  
Matthew C. Gerstenberger ◽  
David A. Rhoades ◽  
Graeme H. McVerry

Author(s):  
Mark Stirling ◽  
Matthew Gerstenberger ◽  
Nicola Litchfield ◽  
Graeme McVerry ◽  
Warwick Smith ◽  
...  

We present a new probabilistic seismic hazard model for the Canterbury region, the model superseding the earlier model of Stirling et al. (1999, 2001). The updated model incorporates new onshore and offshore fault data, new seismicity data, new methods for the earthquake source parameterisation of both datasets, and new methods for estimation of the expected levels of Modified Mercalli Intensity (MMI) across the region. While the overall regional pattern of estimated hazard has not changed since the earlier seismic hazard model, there have been slight reductions in hazard in some areas (western Canterbury Plains and eastern Southern Alps), coupled with significant increases in hazard in one area (immediately northeast of Kaikoura). The changes to estimated acceleration for the new versus older model serve to show the extent that major changes to a multidisciplinary source model may impact the final estimates of hazard, while the new MMI estimates show the added impact of a new methodology for calculating MMI hazard.


2003 ◽  
Vol 3 (1/2) ◽  
pp. 129-134 ◽  
Author(s):  
T. M. Tsapanos ◽  
G. A. Papadopoulos ◽  
O. Ch. Galanis

Abstract. A Bayesian statistics approach is applied in the seismogenic sources of Greece and the surrounding area in order to assess seismic hazard, assuming that the earthquake occurrence follows the Poisson process. The Bayesian approach applied supplies the probability that a certain cut-off magnitude of Ms = 6.0 will be exceeded in time intervals of 10, 20 and 75 years. We also produced graphs which present the different seismic hazard in the seismogenic sources examined in terms of varying probability which is useful for engineering and civil protection purposes, allowing the designation of priority sources for earthquake-resistant design. It is shown that within the above time intervals the seismogenic source (4) called Igoumenitsa (in NW Greece and west Albania) has the highest probability to experience an earthquake with magnitude M > 6.0. High probabilities are found also for Ochrida (source 22), Samos (source 53) and Chios (source 56).


2013 ◽  
Vol 13 (3) ◽  
pp. 679-688 ◽  
Author(s):  
F. Abdi ◽  
N. Mirzaei ◽  
E. Shabani

Abstract. This study presents the results of probabilistic seismic hazard (PSH) deaggregation for 5%-damped 0.2 and 1.0 s spectral accelerations, corresponding to mean return periods (MRPs) of 50, and 475 yr for Tehran city. The aim of this paper is to quantify the dominant events that have the most contribution on ground-motion exceedance from the above mentioned hazard levels. The scenario earthquakes are characterized by bins of magnitude (M), source-to-site distance (R), and epsilon (ε). The results reveal that for Tehran city, the hazard is mainly controlled by local seismicity. Generally, as the spectral acceleration period increase, the contribution of larger and more distant scenario earthquakes to the overall seismic hazard increase.


2012 ◽  
Vol 102 (4) ◽  
pp. 1514-1542 ◽  
Author(s):  
M. Stirling ◽  
G. McVerry ◽  
M. Gerstenberger ◽  
N. Litchfield ◽  
R. Van Dissen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document