scholarly journals Time independent seismic hazard analysis of Greece deduced from Bayesian statistics

2003 ◽  
Vol 3 (1/2) ◽  
pp. 129-134 ◽  
Author(s):  
T. M. Tsapanos ◽  
G. A. Papadopoulos ◽  
O. Ch. Galanis

Abstract. A Bayesian statistics approach is applied in the seismogenic sources of Greece and the surrounding area in order to assess seismic hazard, assuming that the earthquake occurrence follows the Poisson process. The Bayesian approach applied supplies the probability that a certain cut-off magnitude of Ms = 6.0 will be exceeded in time intervals of 10, 20 and 75 years. We also produced graphs which present the different seismic hazard in the seismogenic sources examined in terms of varying probability which is useful for engineering and civil protection purposes, allowing the designation of priority sources for earthquake-resistant design. It is shown that within the above time intervals the seismogenic source (4) called Igoumenitsa (in NW Greece and west Albania) has the highest probability to experience an earthquake with magnitude M > 6.0. High probabilities are found also for Ochrida (source 22), Samos (source 53) and Chios (source 56).

2001 ◽  
Vol 34 (4) ◽  
pp. 1619
Author(s):  
T. M. TSAPANOS ◽  
O. CH. GALANIS ◽  
S. D. MAVRIDOU ◽  
M. P. HELMl

The Bayesian statistics is adopted in 11 seismic sources of Japan and 14 of Philippine in order to estimate the probabilities of occurrence of large future earthquakes, assuming that earthquakes occurrence follows the Poisson distribution. The Bayesian approach applied represents the probability that a certain cut-off magnitude (or larger) will exceed in a given time interval of 20 years, that is 1998-2017. This cut-off magnitude is chosen the one with M=7.0 or greater. In this case we can consider these obtained probabilities as a seismic hazard presentation. More over curves are produced which present the fluctuation of the seismic hazard between these seismic sources. These graphs of varying probability are useful either for engineering or other practical purposes


2021 ◽  
Author(s):  
Jack N. Williams ◽  
Luke N. J. Wedmore ◽  
Åke Fagereng ◽  
Maximilian J. Werner ◽  
Hassan Mdala ◽  
...  

Abstract. Active fault data are commonly used in seismic hazard assessments, but there are challenges in deriving the slip rate, geometry, and frequency of earthquakes along active faults. Herein, we present the open-access geospatial Malawi Seismogenic Source Database (MSSD), which describes the seismogenic properties of faults that have formed during East African rifting in Malawi. We first use empirical observations to geometrically classify active faults into section, fault, and multi-fault seismogenic sources. For sources in the North Basin of Lake Malawi, slip rates can be derived from the vertical offset of a seismic reflector that is estimated to be 75 ka based on dated core. Elsewhere, slip rates are constrained from advancing a ‘systems-based’ approach that partitions geodetically-derived rift extension rates in Malawi between seismogenic sources using a priori constraints on regional strain distribution in magma-poor continental rifts. Slip rates are then combined with source geometry and empirical scaling relationships to estimate earthquake magnitudes and recurrence intervals, and their uncertainty is described from the variability of outcomes from a logic tree used in these calculations. We find that for sources in the Lake Malawi’s North Basin, where slip rates can be derived from both the geodetic data and the offset seismic reflector, the slip rate estimates are within error of each other, although those from the offset reflector are higher. Sources in the MSSD are 5–200 km long, which implies that large magnitude (MW 7–8) earthquakes may occur in Malawi. Low slip rates (0.05–2 mm/yr), however, mean that the frequency of such events will be low (recurrence intervals ~103–104 years). The MSSD represents an important resource for investigating Malawi’s increasing seismic risks and provides a framework for incorporating active fault data into seismic hazard assessment in other tectonically active regions.


2017 ◽  
Vol 43 (1) ◽  
pp. 486 ◽  
Author(s):  
S. Pavlides ◽  
R. Caputo ◽  
S. Sboras ◽  
A. Chatzipetros ◽  
G. Papathanasiou ◽  
...  

The new reasearch project to create the Greek Catalogue of Active Faults and Database of Seismogenic Sources has three major goals: (i) the systematic collection of all available information concerning neotectonic, active and capable faults as well as broader seismogenic volumes within the Aegean Region; the search will be mainly based on geological and geophysical data; (ii) the quantification of the principal seismotectonic parameters of the different sources and the associated degree of uncertainty; (iii) to supply an integrated view of potentially damaging seismogenic sources for a better assessment of the Seismic Hazard of Greece. The informatic framework of the database follows that used for the Italian Database of Individual Seismogenic Sources (DISS). In this paper we present the architecture of the new Database of Active faults of the broader Aegean Area relative to Greece, the progress made up to present and the following activities yet to be accomplished.


2013 ◽  
Vol 07 (04) ◽  
pp. 1350035
Author(s):  
N. P. KATARIA ◽  
M. SHRIKHANDE ◽  
J. D. DAS

An important component of hazard mitigation is to estimate the future hazard for design calculations. In the present study, a deterministic seismic hazard assessment of Andaman and Nicobar region is carried out, which is one of the most seismically active regions of India. The study area is divided into seven seismogenic source zones based on seismicity and tectonic setting. For ground motion estimation at Andaman and Nicobar, for each seismogenic zone different attenuation relationship is used as per tectonic setting of that seismogenic zone. In order to generate the site specific design spectrum, final results are calculated in the form of peak ground acceleration (PGA) and 5%-damped pseudo-spectral acceleration (PSA) for 0.2 s and 1 s. Calculated results are compared with some earlier works for the studied area and the probable reasons for variations are discussed.


2014 ◽  
Vol 638-640 ◽  
pp. 1854-1857 ◽  
Author(s):  
Jeng Hsiang Lin

Integrating the available research results from fragility analysis of building structures and seismic hazard analysis, this study explored some probability information for current earthquake resistant design for general buildings and examined structural performance of buildings under the action of earthquake motions. The results of this study show that performance objectives suggested by FEMA are not realized for the buildings of light steel, pre-cast concrete, reinforced masonry, and un-reinforced masonry, designed according to the Taiwan seismic design standards. The results may provide some valuable information for future code calibration in Taiwan.


2021 ◽  
Vol 47 (2) ◽  
pp. 862-876
Author(s):  
Michael M Msabi ◽  
Richard W Ferdinand

This paper presents the seismic hazard levels for the Northern Tanzania Divergence (NTD) and adjoining areas by using area seismic source zones. The 15 source zones were considered based on the major geological and tectonic features, faulting style, and seismicity trends. For each source, earthquake recurrence parameters were computed by using the earthquake catalogue with events compiled from 1956 to 2011. The peak ground accelerations (PGA) and spectral accelerations (SA) at 0.2 and 2.0 second, respectively, were computed for a 10% probability of exceedance in 50 years at sites defined by a 0.1° x 0.1° grid. The recurrence parameters of 15 zones and attenuation relations developed by Akkar et al. (2014) and Chiou and Youngs (2014) were integrated in a logic tree. Obtained results that are presented as hazard maps show strong spatial variations ranging from 60 to 330 cm/s/s for PGA, from 100 to 650 cm/s/s at 0.2 sec and from 6 to 27 cm/s/s at 2 sec for 475 years mean return period and 5% damping. Hazard levels depict the general tectonic setting of the study area with the western (Eyasi-Wembere) and central (Natron-Manyara-Balangida) rift segments having relatively high PGA values compared with the eastern Pangani rift. This work provides indications of seismic hazards to policymakers and planners during planning and guidelines for earthquake-resistant design engineers. Keywords: Homogeneous Earthquakes Catalogue; GMPE; PSHA; NTD


2011 ◽  
Vol 9 (2) ◽  
pp. 231-240
Author(s):  
Slavko Zdravkovic ◽  
Biljana Mladenovic ◽  
Dragan Zlatkov

Criteria that are adopted in earthquake resistant design of pipelines and gas lines have to take into account seismic movements and seismic generated forces that are of significantly high probability level of appearance along the length of pipeline. A choice of criteria has to include an acceptable level of seismic hazard, while design criteria should be calculated. Seismic hazard is defined as a part of natural hazard and means probability of appearance of earthquake of corresponding characteristics in certain time and place. For design needs and calculation of influences caused by seismic forces the most important is seismic hazard of maximal horizontal acceleration due to ground vibration during earthquake. The methodology of seismic hazard calculation as base for micro seismic zoning is presented in the paper. It is shown calculation of seismic hazard of maximal horizontal acceleration due to ground vibration that is applied for 985 points at the territory of Republic of Serbia, based on which maps for return periods of 50 and 200 years are drawn.


Author(s):  
David J. Dowrick

Revised estimates of the return periods of Modified Mercalli (MM) intensity for Auckland and Northland, arising from a revision of the attenuation of intensity in New Zealand, and latest data and views on the local seismicity and geology, represent considerable reductions in the hazard given in Smith and Berryman's seismic hazard model of New Zealand. The revised levels are MM6 and MM7 for 150 and 1200 year return periods. This implies that most structures and plant in Auckland and Northland could have much simpler and less onerous earthquake resistant design and construction than required by current codes. This simpler approach would be significantly cheaper for older so-called "earthquake risk buildings" as well as new construction.


Sign in / Sign up

Export Citation Format

Share Document