scholarly journals A Chemical Reaction Can Save Mankind -A Review of Experiment Research on CO2+C=2CO and Application

2021 ◽  
Vol 13 (2) ◽  
pp. 1
Author(s):  
Jia-Min Jin

There are two contents of this article. The first is briefly to review the experiment research on the catalysis mechanism of Carbon Gasification Reaction-CGR(C+CO2=2CO) from 60s -90s. The results show that the catalytic phenomenon is physical phenomenon rather than chemical, and the catalyst does not participate in the chemical reaction. The catalytic activity and selectivity of catalyst are related to the electronegativity or energy level of the catalyst. The second is to clarify the applications of CGR for save mankind. The lime is first proposed to capture CO2 in flue gas of power plant. The lime can be recycled. The coal is used to convert CO2 from cement steel produce into CO, producing both energy and lime and iron. The capture CO2 is used to treat waste such as firewood and plastic, eliminate white pollution. The author considers that using the CGR which has been used for a long time can solve the three problems which people worry about: energy exhaustion, environmental pollution and climate crisis.

Catalysts ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 118
Author(s):  
Qui Quach ◽  
Erik Biehler ◽  
Ahmed Elzamzami ◽  
Clay Huff ◽  
Julia M. Long ◽  
...  

The current climate crisis warrants investigation into alternative fuel sources. The hydrolysis reaction of an aqueous hydride precursor, and the subsequent production of hydrogen gas, prove to be a viable option. A network of beta-cyclodextrin capped gold nanoparticles (BCD-AuNP) was synthesized and subsequently characterized by Powder X-Ray Diffraction (P-XRD), Fourier Transform Infrared (FTIR), Transmission Electron Microscopy (TEM), and Ultraviolet-Visible Spectroscopy (UV-VIS) to confirm the presence of gold nanoparticles as well as their size of approximately 8 nm. The catalytic activity of the nanoparticles was tested in the hydrolysis reaction of sodium borohydride. The gold catalyst performed best at 303 K producing 1.377 mL min−1 mLcat−1 of hydrogen. The activation energy of the catalyst was calculated to be 54.7 kJ/mol. The catalyst resisted degradation in reusability trials, continuing to produce hydrogen gas in up to five trials.


ACS Omega ◽  
2020 ◽  
Vol 5 (50) ◽  
pp. 32551-32563
Author(s):  
Peiyuan Pan ◽  
Weijian Zhou ◽  
Heng Chen ◽  
Naiqiang Zhang
Keyword(s):  

Author(s):  
Akili D. Khawaji ◽  
Jong-Mihn Wie

The most popular method of controlling sulfur dioxide (SO2) emissions in a steam turbine power plant is a flue gas desulfurization (FGD) process that uses lime/limestone scrubbing. Another relatively newer FGD technology is to use seawater as a scrubbing medium to absorb SO2 by utilizing the alkalinity present in seawater. This seawater scrubbing FGD process is viable and attractive when a sufficient quantity of seawater is available as a spent cooling water within reasonable proximity to the FGD scrubber. In this process the SO2 gas in the flue gas is absorbed by seawater in an absorber and subsequently oxidized to sulfate by additional seawater. The benefits of the seawater FGD process over the lime/limestone process and other processes are; 1) The process does not require reagents for scrubbing as only seawater and air are needed, thereby reducing the plant operating cost significantly, and 2) No solid waste and sludge are generated, eliminating waste disposal, resulting in substantial cost savings and increasing plant operating reliability. This paper reviews the thermodynamic aspects of the SO2 and seawater system, basic process principles and chemistry, major unit operations consisting of absorption, oxidation and neutralization, plant operation and performance, cost estimates for a typical seawater FGD plant, and pertinent environmental issues and impacts. In addition, the paper presents the major design features of a seawater FGD scrubber for the 130 MW oil fired steam turbine power plant that is under construction in Madinat Yanbu Al-Sinaiyah, Saudi Arabia. The scrubber with the power plant designed for burning heavy fuel oil containing 4% sulfur by weight, is designed to reduce the SO2 level in flue gas to 425 ng/J from 1,957 ng/J.


2004 ◽  
Vol 30 (6) ◽  
pp. 758-761
Author(s):  
Tomio MIMURA ◽  
Yasuyuki YAGI ◽  
Masaki IIJIMA ◽  
Ryuji YOSIYAMA ◽  
Takahito YONEKAWA

Sign in / Sign up

Export Citation Format

Share Document