scholarly journals Time-Series Forecasting Models for Gasoline Prices in China

2018 ◽  
Vol 10 (12) ◽  
pp. 43
Author(s):  
Feng Xu ◽  
Mohamad Sepehri ◽  
Jian Hua ◽  
Sergey Ivanov ◽  
Julius N. Anyu

Accurate prediction of gasoline price is important for the automobile makers to adjust designs and productions as well as marketing plans of their products. It is also necessary for government agencies to set effective inflation monitoring and environmental protection policies. To predict future levels of the gasoline price, due to difficulties of obtaining accurate estimates of influential external factors, data driven time-series forecasting models thus become more suitable given the convenience and practicability they are providing. In this paper, five popular time-series forecasting models, i.e., ARIMA-GARCH, exponential smoothing, grey system, neural network, and support vector machines models, are applied to predict gasoline prices in China. Comparing the performances of these models, it is noted that for this specific time series, a parsimonious ARIMA model performs the best in predicting the gasoline prices for a short time horizon, while for the medium length and long run the SVR and FNN models outperforms others respectively.  

2020 ◽  
Vol 63 (5) ◽  
Author(s):  
Dulin Zhai ◽  
Xueming Zhang ◽  
Pan Xiong

  The catastrophic damages caused by the Jiuzhaigou earthquake in China of August 8, 2017 and the Mexico earthquake of September 20, 2017 have revealed some important weaknesses of currently operational earthquake-monitoring and forecasting systems. In this work, six time series forecasting models were applied to detect pre-earthquake anomalies within infrared outgoing longwave radiation. After comparing their prediction results using non-seismic time series data, the autoregressive integrated moving average (ARIMA) model was selected as the optimal model, and then a new prediction method based on this ARIMA model was proposed. The results show that the values observed on July 27 and August 5 before the Jiuzhaigou earthquake in China exceed the confidence interval for prediction and reaches the maximum on August 5, 2017. This indicates the infrared outgoing longwave radiation (IR-OLR) anomalies before the Jiuzhaigou earthquake in China. For the Mexico earthquake, pre-earthquake IR-OLR anomalies are detected on September 14, 18, and 19, and reaches the maximum on September 14, 2017. This demonstrates that the proposed time series forecasting model based on ARIMA could be an effective method for earthquake anomalies detection within infrared outgoing longwave radiation.


2021 ◽  
Vol 17 (5) ◽  
pp. 609-620
Author(s):  
Wan Imanul Aisyah Wan Mohamad Nawi ◽  
Muhamad Safiih Lola ◽  
Razak Zakariya ◽  
Nurul Hila Zainuddin ◽  
Abd. Aziz K. Abd Hamid ◽  
...  

Forecasting is a very effortful task owing to its features which simultaneously contain linear and nonlinear patterns. The Autoregressive Integrated Moving Average (ARIMA) model has been one the most widely utilized linear model in time series forecasting. Unfortunately, the ARIMA model cannot effortlessly handle nonlinear patterns alone. Thus, Support Vector Machine (SVM) model is introduced to solve nonlinear behavior in the datasets with high variance and uncertainty. The purposes of this study are twofold. First, to propose a hybrid ARIMA models using SVM. Secondly, to test the effectiveness of the proposed hybrid model using sea surface temperature (SST) data. Our investigation is based on two well-known real datasets, i.e., SST (modis) and in-situ SST (hycom). Statistical measurement such as MAE, MAPE, MSE, and RMSE are carried out to investigate the efficacy of the proposed models as compared to the previous ARIMA and SVMs models. The empirical results reveal that the proposed models produce lesser MAE, MAPE, MSE, and RMSE values in comparison to the single ARIMA and SVMs models. In additional, ARIMA-SVM are much better than compared to the existing models since the forecasting values are closer to the actual value. Therefore, we conclude that the presented models can be used to generate superior predicting values in time series forecasting with a way higher forecast precision.


Entropy ◽  
2019 ◽  
Vol 21 (5) ◽  
pp. 455 ◽  
Author(s):  
Hongjun Guan ◽  
Zongli Dai ◽  
Shuang Guan ◽  
Aiwu Zhao

In time series forecasting, information presentation directly affects prediction efficiency. Most existing time series forecasting models follow logical rules according to the relationships between neighboring states, without considering the inconsistency of fluctuations for a related period. In this paper, we propose a new perspective to study the problem of prediction, in which inconsistency is quantified and regarded as a key characteristic of prediction rules. First, a time series is converted to a fluctuation time series by comparing each of the current data with corresponding previous data. Then, the upward trend of each of fluctuation data is mapped to the truth-membership of a neutrosophic set, while a falsity-membership is used for the downward trend. Information entropy of high-order fluctuation time series is introduced to describe the inconsistency of historical fluctuations and is mapped to the indeterminacy-membership of the neutrosophic set. Finally, an existing similarity measurement method for the neutrosophic set is introduced to find similar states during the forecasting stage. Then, a weighted arithmetic averaging (WAA) aggregation operator is introduced to obtain the forecasting result according to the corresponding similarity. Compared to existing forecasting models, the neutrosophic forecasting model based on information entropy (NFM-IE) can represent both fluctuation trend and fluctuation consistency information. In order to test its performance, we used the proposed model to forecast some realistic time series, such as the Taiwan Stock Exchange Capitalization Weighted Stock Index (TAIEX), the Shanghai Stock Exchange Composite Index (SHSECI), and the Hang Seng Index (HSI). The experimental results show that the proposed model can stably predict for different datasets. Simultaneously, comparing the prediction error to other approaches proves that the model has outstanding prediction accuracy and universality.


2020 ◽  
Vol 54 (2) ◽  
pp. 597-614
Author(s):  
Shanoli Samui Pal ◽  
Samarjit Kar

In this paper, fuzzified Choquet integral and fuzzy-valued integrand with respect to separate measures like fuzzy measure, signed fuzzy measure and intuitionistic fuzzy measure are used to develop regression model for forecasting. Fuzzified Choquet integral is used to build a regression model for forecasting time series with multiple attributes as predictor attributes. Linear regression based forecasting models are suffering from low accuracy and unable to approximate the non-linearity in time series. Whereas Choquet integral can be used as a general non-linear regression model with respect to non classical measures. In the Choquet integral based regression model parameters are optimized by using a real coded genetic algorithm (GA). In these forecasting models, fuzzified integrands denote the participation of an individual attribute or a group of attributes to predict the current situation. Here, more generalized Choquet integral, i.e., fuzzified Choquet integral is used in case of non-linear time series forecasting models. Three different real stock exchange data are used to predict the time series forecasting model. It is observed that the accuracy of prediction models highly depends on the non-linearity of the time series.


2018 ◽  
Vol 7 (3.15) ◽  
pp. 36 ◽  
Author(s):  
Sarah Nadirah Mohd Johari ◽  
Fairuz Husna Muhamad Farid ◽  
Nur Afifah Enara Binti Nasrudin ◽  
Nur Sarah Liyana Bistamam ◽  
Nur Syamira Syamimi Muhammad Shuhaili

Predicting financial market changes is an important issue in time series analysis, receiving an increasing attention due to financial crisis. Autoregressive integrated moving average (ARIMA) model has been one of the most widely used linear models in time series forecasting but ARIMA model cannot capture nonlinear patterns easily. Generalized autoregressive conditional heteroscedasticity (GARCH) model applied understanding of volatility depending to the estimation of previous forecast error and current volatility, improving ARIMA model. Support vector machine (SVM) and artificial neural network (ANN) have been successfully applied in solving nonlinear regression estimation problems. This study proposes hybrid methodology that exploits unique strength of GARCH + SVM model, and GARCH + ANN model in forecasting stock index. Real data sets of stock prices FTSE Bursa Malaysia KLCI were used to examine the forecasting accuracy of the proposed model. The results shows that the proposed hybrid model achieves best forecasting compared to other model.  


Sign in / Sign up

Export Citation Format

Share Document