scholarly journals A Reconnainsances Study to Delianate Conductive Groundwater Zone Using Resistivity Sounding in Some Part of Kwara State North-Central, Nigeria

2020 ◽  
Vol 12 (2) ◽  
pp. 57
Author(s):  
S. Adamu ◽  
A. K. Yusuf ◽  
A.G. Kodomi ◽  
I. B. Wulo

From the results, three to four electrostratigraphic layers with resistivity value ranging from 44 to 997 ohm/m and thickness ranging from 0.5 to 39.7 m were observed in the study area. The top loose rocks, the weathered conductive zone, the fractured basement rock and the fresh basement rock of older granite suite were encountered respectively. From this research, it can be deduce that, the thicker top soil and deeper weathered basement rock at the depth of 30 to 45 meters within this area produce a productive site for sitting future borehole. Insufficient groundwater supply in some places leading to scarcity is noticed in VES 10, VES 12 and VES 13. H, I, and A curve types are generally the most common in the area and are typical of basement complex area. Geographical Positioning System tool (model: GPSmap 76CSx), was used to locate the VES points. Fifteen VES points with electrode spacing [AB/2] of 100 meters separation around Ndanaku and environs were undertaken using Schlumberger configuration. IPI 2 Win [1990-2003] Geosoft resistivity sounding software was used to model the field curves from the measured data on the field. Groundwater in the area is regarded as poor due to localized nature of the aquifer and the study aimed at addressing this scarcity of water within the area by studying the conductive zone and knows the aquifer types through resistivity sounding techniques for future drilling.

2020 ◽  
Vol 4 (2) ◽  
pp. 65-69
Author(s):  
Chaanda M.S ◽  
Alaminiokuma G.I.

Vertical Electrical Sounding (VES) was conducted in Salbi farm in the fractured Basement Complex, North- Central Nigeria to determine the groundwater resource potential to serve for agricultural purposes. Four VES stations using Schlumberger electrode configuration with a maximum current electrode spread of 300m were employed for data acquisition. ZHODY software was employed in computing resistivities, depths and thicknesses of the various layers and curve types. Results indicate that the area is characterized by 3 distinct geoelectric layers inferred differently at the VES locations. One potential groundwater aquifer zone was delineated at VES 1, 2, and 4 within the fractured/weathered basement columns having depths ranging between 48.8 – 59.60m and resistivities ranging between 213 – 513 Ωm. These results suggest that boreholes for sustainable groundwater supply in Salbi farm should be sited either at VES 1, 2 or 4 location and screened at a depth ≥60.0m. Wells to develop this resource should be drilled to an effective depth of 40 to 60 m for optimum yields. It is recommended that pumping test be done in order to further determine the aquifer efficiency and productivity in the area. However, the aquifers at these locations have potentials for groundwater but may be vulnerable to contamination.


2020 ◽  
Vol 2 (1) ◽  
Author(s):  
Ahmed Babeker Elhag

The geology and hydro-geophysical features can aid in identifying borehole location. The study aims to investigate groundwater aquifers and best location of boreholes in the crystalline basement area of Abu Zabad near El Obeid Southwest, Sudan. The study area is underlain by two aquifers formations from Precambrian age. The oldest units of basement complex of area under investigation consist of metamorphic rocks including gneiss, schist, and quartzite.The geophysical methods electromagnetic (EM) and vertical electrical sounding (VES) surveys showed that best aquifers yield for construction of boreholes are in weathering and fractures formation. The EM results revealed that structural features are significant for groundwater potential and interpretation of the VES data also revealed four geo-electric layers, but generally two distinct lithologic layers, which include Superficial deposit and bedrock-basement respectively. The curves generated from the data revealed H curve and HK curve, and thickness of these layers varies from 15 m to 50 m in the area. The aquifer thickness range from 20 m to 30 m. The study concludes that these techniques are suitable for identifying borehole location in the basement rock in Abu Zabad Area Sudan.


2019 ◽  
Vol 7 (1) ◽  
pp. 67
Author(s):  
Nwosu Jacinta Chiemela ◽  
Leonard I Nwosu ◽  
Godwin O Chukwu

A Vertical Electrical resistivity Sounding (VES) survey was carried out, to study the groundwater supply potential, protective capacity and soil corrosivity of aquifers in Ikeduru Local Government Area of Imo state, Nigeria. A total of ten (10) geoelectric soundings were acquired. Schlumberger electrode configuration was used in acquiring the data. Six to seven geoelectric layers were delineated from the interpreted results, the Aquifers were delineated between the fifth and sixth geoelectric layers, having an apparent resistivity above 1000Ωm, with the highest thick of 69.0m at a depth of 144.0m. Longitudinal Conductance, Hydraulic Conductivity, Transmissivity and Product Conductance range are as followings for the aquifers; 1.720 – 127.000 x 10-3Ω-1, 15.90 – 188.79m/day, 1093.3 – 1097.1m2/day and 2.590 – 252.50 x 10-3 respectively. Inferring from our hydraulic parameters, all the aquiferous zones have very high designation, wwithdrawal of great regional importance of groundwater supply potential and practically noncorrosive, soil corrosivity. 40% percentage of the aquiferous units have very good protective capacity, while for excellent and good protective capacity of the study are is 30%. All the VES points are said to be a very viable potential for safe source for groundwater exploration.  


1994 ◽  
Vol 20 ◽  
pp. 129-136
Author(s):  
S. Shabtaie ◽  
C.R. Bentley

Electrical resistivity sounding using the four-electrode Schlumberger array was carried out at station UpB on Ice Stream B to an electrode spacing of 3 km. Measured apparent resistivities were compared with theoretical models based on known relations between resistivity, density and temperature. Densities were measured in a pit and two coreholes; temperatures were measured in the upper 200 m of the ice stream and have been calculated for greater depth from an ice-stream temperature model. The resistivity, after correction for density and temperature, increases with depth down to 650-700 m. Below that is a marked decrease over the next 100m or so that we correlate with the Holocene-Wisconsin transition zone. Still deeper there is an orders-of-magnitude increase to a value, in the basal ice, of 30 MΩ m or more. This extremely high resistivity is similar to that reported for temperate glaciers and deep in the Antarctic ice sheet elsewhere. We attribute it to the destruction, by extensive metamorphism, of impurity-conduction paths at two-grain boundaries


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
K. A. N. Adiat ◽  
O. F. Ajayi ◽  
A. A. Akinlalu ◽  
I. B. Tijani

AbstractEmpirical relationship between geoelectric parameters and groundwater level in boreholes/wells has not been established. Also, prediction of groundwater level from geoelectric parameters had hitherto not been reported. In order to overcome these challenges, the capability of artificial neural network (ANN) to model nonlinear system was explored in this study to predict groundwater level from geoelectric parameters. To achieve the above objectives, the ground water level (GWL) of all the accessible wells in the study area was obtained and this was used as the output parameter for the ANN model. A total of fifty-one (51) parametric vertical electrical soundings (VES) stations were occupied at each of the well location by adopting Schlumberger array configuration with electrode spacing (AB/2) ranging from 1 to 100 m. The VES data were quantitatively interpreted to generate geoelectric parameters believed to be controlling the groundwater flow and storage in the area. These parameters served as input for ANN model. The capability of ANN as a nonlinear modeling system was thereafter applied to produce a model that can predict the GWL from the input parameters. The efficiency of the model was evaluated by estimating the mean square error (MSE) and the regression coefficient (R) for the model. The results established that seasonal variation has little effect on the water fluctuation in the wells. Two aquifer types, weathered and fractured basement aquifer types, were delineated in the area. The results of the ANN model validation showed low MSE of 0.0014286 and the high regression coefficient (R) of 0.98731. This indicates that ANN can be used to predict GWL in a basement complex terrain with reasonably good accuracy. It is concluded that the ANN can effectively predict GWL from geoelectric parameters.


Geophysics ◽  
1969 ◽  
Vol 34 (6) ◽  
pp. 924-943 ◽  
Author(s):  
Adel A. R. Zohdy

A new method designated TDS (transverse differential sounding) is proposed for obtaining high resolution direct current resistivity soundings in the field. The measured apparent resistivity is designated TDR (transverse differential resistivity) and is defined by [Formula: see text], where [Formula: see text] and L are the Schlumberger apparent resistivity and electrode spacing, respectively. A collinear symmetric system (B′AMNBA′) consisting of two pairs of current electrodes and one pair of potential electrodes is used for measuring the value of [Formula: see text] directly in the field. For the interpretation of TDS curves obtained in the field, theoretical sets of master curves are computed either directly from the formal expression for [Formula: see text] in terms of Stefanesco’s kernel function and Bessel functions or by transformation of Schlumberger (VES) and/or dipole‐dipole sounding curves. Conversely, TDS and VES curves computed for the same horizontally stratified earth models and for corresponding electrode spacings are easily transformed, by means of simple relations, into radial, perpendicular, and parallel dipole‐dipole, or LDS (longitudinal differential sounding) curves. It is mathematically established that TDS curves, for horizontally stratified laterally homogeneous media, are identical to sounding curves obtained with a parallel dipole‐dipole array at an azimuth angle of 60 degrees, and that negative values of apparent resistivity [Formula: see text] are measured for certain geoelectric sections. Examples of theoretical TDS and LDS curves for two‐, three‐, and four‐layer earth models compared with corresponding VES curves illustrate the higher resolving power and greater probing depth of differential soundings. The field procedures and electric current requirements described for TDS and other types of soundings show that seven apparent resistivity values, corresponding to four electrode arrays, can be measured at each electrode setup.


Sign in / Sign up

Export Citation Format

Share Document