scholarly journals The Importance of Flower Phenology in Seed Orchard Designs

1980 ◽  
Vol 56 (5) ◽  
pp. 241-242 ◽  
Author(s):  
Anita Fashler ◽  
Oscar Sziklai

Author(s):  
Bryce A. Richardson ◽  
Linsay Chaney ◽  
Nancy L. Shaw ◽  
Shannon M. Still


2021 ◽  
pp. 1-9
Author(s):  
N. K. Kartikawati ◽  
A. Rimbawanto ◽  
M. Na’iem ◽  
S. Indrioko ◽  
J. C. Doran


New Forests ◽  
2009 ◽  
Vol 39 (3) ◽  
pp. 261-273 ◽  
Author(s):  
Yoshinari Moriguchi ◽  
Yoko Yamazaki ◽  
Hideaki Taira ◽  
Yoshihiko Tsumura


2000 ◽  
Vol 15 (4) ◽  
pp. 399-404 ◽  
Author(s):  
Anne Pakkanen ◽  
Teijo Nikkanen ◽  
Pertti Pulkkinen


ISRN Forestry ◽  
2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Edward Missanjo ◽  
Gift Kamanga-Thole ◽  
Vidah Manda

Genetic and phenotypic parameters for height, diameter at breast height (dbh), and volume were estimated for Pinus kesiya Royle ex Gordon clonal seed orchard in Malawi using an ASReml program, fitting an individual tree model. The data were from 88 clones assessed at 18, 23, 30, 35, and 40 years of age. Heritability estimates for height, dbh, and volume were moderate to high ranging from 0.19 to 0.54, from 0.14 to 0.53, and from 0.20 to 0.59, respectively, suggesting a strong genetic control of the traits at the individual level, among families, and within families. The genetic and phenotypic correlations between the growth traits were significantly high and ranged from 0.69 to 0.97 and from 0.60 to 0.95, respectively. This suggests the possibility of indirect selection in trait with direct selection in another trait. The predicted genetic gains showed that the optimal rotational age of the Pinus kesiya clonal seed orchard is 30 years; therefore, it is recommended to establish a new Pinus kesiya clonal seed orchard. However, selective harvest of clones with high breeding values in the old seed orchard should be considered so that the best parents in the old orchard can continue to contribute until the new orchard is well established.



2006 ◽  
Vol 36 (4) ◽  
pp. 1054-1058 ◽  
Author(s):  
O K Hansen ◽  
E D Kjær

A paternity analysis using five microsatellite markers was conducted in a Danish clonal seed orchard with 13 Abies nordmanniana (Stev.) Spach clones. The purpose was to investigate potential seed-orchard dysfunctions, with special emphasis on nonequal pollen contributions and selfing. Male paternity was found for 232 seedlings germinated from seeds collected on three ramets, each of eight clones, and the relative contribution of each clone to the gene pool of male gametes was calculated. Furthermore, 49 ramets were genotyped to check for erroneous grafting. The effect of an unbalanced male contribution was quantified by means of two measures: (1) the status number (NS), which reflects buildup of coancestry in the seed-orchard crop as a result of a low number of clones and an unequal male contribution, and (2) the asymptotic variance effective population number (Ne(v)). The contributions by pollen donors from the 13 clones were highly skewed. Three clones were fathers to more than 75% of the progenies, while making up only 24% of the ramets in the seed orchard. Four clones sired no progenies at all. The unequal contribution on the male side corresponded to NS = 4.2 and Ne(v) = 5.8. Some selfing was observed, which may give rise to concern if clonal seed orchards with few clones are established. The estimated maximum pollen contamination from outside the seed orchard was 4.3%. No grafting–labelling errors were identified.



2007 ◽  
Vol 37 (3) ◽  
pp. 515-522 ◽  
Author(s):  
Tore Skrøppa ◽  
Ketil Kohmann ◽  
Øystein Johnsen ◽  
Arne Steffenrem ◽  
Øyvind M. Edvardsen

We present results from early tests and field trials of offspring from two Norway spruce ( Picea abies (L.) Karst.) seed orchards containing clones that have been transferred from high altitudes to sea level and from northern to southern latitudes. Seedlings from seeds produced in the low-altitude seed orchard developed frost hardiness later at the end of the growth season, flushed later in field trials, and grew taller than seedlings from seeds produced in natural stands. They had the lowest mortality rate and the lowest frequency of injuries in the field trials. Similar results were observed in seedlings from seeds produced in the southern seed orchard. We found no adverse effects of the changed growth rhythm. Seedlings from two seed crops in the southern orchard, produced in years with a warm and a cold summer, had different annual growth rhythms. The results are explained mainly by the effects of the climatic conditions during the reproductive phase. Seed crops from different years in the same seed orchard may produce seedlings that perform as if they were from different provenances. It is argued that the effects of the climatic conditions during seed production must contribute to the variation among provenances of Norway spruce.



2021 ◽  
Vol 17 (4) ◽  
Author(s):  
Joukje Buiteveld ◽  
Herma JJ Koehorst-van Putten ◽  
Linda Kodde ◽  
Ivo Laros ◽  
Giorgio Tumino ◽  
...  

AbstractThe Netherlands’ field genebank collection of European wild apple (Malus sylvestris), consisting of 115 accessions, was studied in order to determine whether duplicates and mistakes had been introduced, and to develop a strategy to optimize the planting design of the collection as a seed orchard. We used the apple 20K Infinium single nucleotide polymorphism (SNP) array, developed in M. domestica, for the first time for genotyping in M. sylvestris. We could readily detect the clonal copies and unexpected duplicates. Thirty-two M. sylvestris accessions (29%) showed a close genetic relationship (parent-child, full-sib, or half-sib) to another accession, which reflects the small effective population size of the in situ populations. Traces of introgression from M. domestica were only found in 7 individuals. This indicates that pollination preferentially took place among the M. sylvestris trees. We conclude that the collection can be considered as mainly pure M. sylvestris accessions. The results imply that it should be managed as one unit when used for seed production. A bias in allele frequencies in the seeds may be prevented by not harvesting all accessions with a close genetic relationship to the others in the seed orchard. We discuss the value of using the SNP array to elaborate the M. sylvestris genetic resources more in depth, including for phasing the markers in a subset of the accessions, as a first step towards genetic resources management at the level of haplotypes.



2021 ◽  
Vol 78 (1) ◽  
Author(s):  
Mona Quambusch ◽  
Cornelia Bäucker ◽  
Volker Haag ◽  
Andreas Meier-Dinkel ◽  
Heike Liesebach

Abstract • Key message Wavy grain, a rare figure type of wood, leads to highly priced timber in Acer pseudoplatanus L. The influence of this trait on growth performance and its causes are not known. Analyzed wavy and straight grain sycamore maple progenies show comparable growth performance in a field trial. Stability of wavy grain after vegetative propagation is confirmed and genetic inheritance indicated. • Context Wavy grain is a rare figure type of wood resulting from undulating fiber growth that leads to a decorative and highly priced timber in Acer pseudoplatanus L. with top positions on auction sales. Nevertheless, neither the influence of this trait on growth performance is known, nor have the causes been disentangled. • Aims Our objectives were to find out if wavy grain figure influences growth parameters essential for log quality and to gain insight into the causes of wavy grain by the analysis of a progeny trial and a seed orchard. • Methods In a progeny trial with 30-year-old F-1-offspring from selected wavy grained and straight grained trees, trunk diameter, tree height, and trunk shape were evaluated. Additionally, 21 trees of the trial and selected plus tree-grafts of a seed orchard were felled and analyzed for occurrence and intensity of wavy grain structure. • Results No effect of the wavy and straight grain parentage on growth was observed in the progeny trial. Of the felled trees, over 30% showed evidence of wavy grain compared to rare occurrence in natural stands. Wood structure analysis of plus tree scions confirmed the stability of wavy grain after vegetative propagation. • Conclusion Wavy grain seems to be genetically inherited, and there seems to be no statistically significant difference in commercially relevant traits in the progeny. This highlights the value of including wavy grain as a desired attribute in breeding systems of maple.



2021 ◽  
Author(s):  
Paris Lambdin

Abstract This species has had limited distribution from its native habitats in the southern region of the USA since its discovery and description (Lobdell, 1930). O. acuta appears to be restricted to feeding on species of pines and loblolly pine, Pinus taeda, is its preferred food source. In its native habitat, populations seldom reach pest status due to the presence of natural enemies. In 1988, it was transported to a pine seed orchard in China on slash pine, Pinus elliottii, scions purchased in the USA. Sun et al. (1996) noted that O. acuta-infested slash pine scions leaving the USA and entering China in 1988 were not subjected to the quarantine restrictions of either country. The loblolly pine mealybug quickly became established and rapidly spread throughout pine plantations in the Guangdong Province, China where it threatens both native and introduced species of pines in the region.



Sign in / Sign up

Export Citation Format

Share Document