Effet d'une coupe d'ensemencement et du milieu de germination sur la régénération des sapinières boréales riches de seconde venue du Québec

2000 ◽  
Vol 76 (4) ◽  
pp. 643-652 ◽  
Author(s):  
Patricia Raymond ◽  
Jean-Claude Ruel ◽  
Marius Pineau

Stand regeneration failures, sometimes observed in rich second growth balsam fir stands, prompted a study in 1991 to assess the effects of the shelterwood cutting system on regeneration of balsam fir (Abies balsamea (L.) Mill.), white spruce (Picea glauca (Moench) Voss) and paper birch (Betula papyrifera Marsh). The factorial experiment design (split-plot) includes forest cover reduction (0% and 25% of basal area) in main plots and germination substrate (mineral soil, litter removed and control) in subplots. Results of five growing seasons showed that germination substrate was the main factor determining first-year seedling establishment, and that cover reduction became important for seedling survival and long-term establishment of the three species. A 25% canopy reduction combined with mineral seedbed treatment resulted in the best regeneration densities of the three species. Thus far, the results demonstrate the importance of combining humus disturbance to seed cutting in order to achieve regeneration goals set for the future stand. Key words: shelterwood cutting system, balsam fir, white spruce, paper birch, regeneration, seed cutting, germination substrate

2002 ◽  
Vol 80 (4) ◽  
pp. 370-377 ◽  
Author(s):  
David F Greene ◽  
Christian Messier ◽  
Hugo Asselin ◽  
Marie-Josée Fortin

Mean annual seed production is assumed to be proportional to basal area for canopy trees, but it is not known if subcanopy trees produce fewer seeds than expected (given their size) because of low light availability. Ovulate cone production was examined for balsam fir (Abies balsamea (L.) Mill.) and white spruce (Picea glauca (Moench) Voss) in 1998 and for balsam fir in 2000 in western Quebec using subcanopy stems, near or far from forest edges, or (at one site) planted white spruce trees in fully open conditions. A very simple light model for transmission through mature trembling aspen (Populus tremuloides Michx.) crowns and through boles near forest edges was developed to account for the effect of light receipt on cone production. The enhanced light near forest edges (e.g., recent clearcuts) leads to about a doubling of cone production for subcanopy stems. The minimum subcanopy height for cone production far from an edge is about 10 m for balsam fir and 14 m for white spruce, with these minima decreasing near edges. By contrast, the minimum height for white spruce in a plantation (full light) is about 3 m. Accounting for light receipt leads to an increase in the explained variance.Key words: balsam fir, cone production, light model, regressions, subcanopy stems, white spruce.


2002 ◽  
Vol 32 (4) ◽  
pp. 642-652 ◽  
Author(s):  
S Meunier ◽  
J -C Ruel ◽  
G Laflamme ◽  
A Achim

Information on eastern Canadian tree species vulnerability to windthrow is scarce. Some statements on relative species vulnerability have been made but they rely on empirical observations, which are often difficult to generalize. In this context, a study was conducted to compare the overturning resistance of balsam fir (Abies balsamea (L.) Mill.) and white spruce (Picea glauca (Moench) Voss) on a mesic site. To establish which tree characteristics would best explain the critical turning moment, simple linear regressions were calculated using tree dendrometric data. The best regressions were obtained with stem weight. With this variable, resistance to overturning did not differ between the two species. Only regressions involving total height showed a significantly greater resistance for white spruce. This difference can be explained by a difference between the species in height–diameter relationships. For a similar height, spruce has a greater diameter, involving a higher stem weight and thus a greater resistance. Decay did not play a major role in our experiment as trees with external defects were excluded. Our results suggest that to minimize losses from windthrow, silvi cultural treatments on mesic sites should try to increase the proportion of trees of either species with the lowest height/diameter ratio.


1971 ◽  
Vol 49 (7) ◽  
pp. 1005-1011 ◽  
Author(s):  
J. P. Kimmins

The amino acids of new and old foliage of flowering and non-flowering balsam fir (Abies balsamea (L.) Mill.) and white spruce (Picea glauca (Moench) Voss) were investigated using two-dimensional descending paper chromatography. The data were analyzed for variation associated with age of foliage, age of tree, and flowering condition. The concentration of foliar amino acids was greater in balsam fir than in white spruce, and greater in new foliage than old foliage.The difference in concentration between foliage of flowering and non-flowering trees was smaller. However, the new foliage of flowering fir had higher levels of most of the amino acids examined than any other foliage category. This appears to reflect the known suitability of these foliage categories for spruce budworm larvae. While the data presented do not quantify the ecological significance of this apparent correlation, they do support the theory that variations in the nutritional quality of host plants play a very important role in the dynamics of herbivore populations.


1958 ◽  
Vol 34 (1) ◽  
pp. 39-47 ◽  
Author(s):  
J. R. Blais

The relationship between spruce budworm defoliation and radial growth at breast height for balsam fir and white spruce trees of merchantable size was studied in various stands in northwestern Ontario. Defoliation was recorded yearly for these stands from the beginning of the infestation, and radial growth measurements were obtained from increment cores. The first year of radial growth suppression was calculated by comparing the growth of the affected species with that of jack pine and red pine trees by means of a growth-ratio technique. Apparent suppression in balsam fir and white spruce varied between stands, and, generally, occurred at the earliest in the second year and at the latest in the fourth year of severe defoliation. A wide ring at the base of the tree coinciding with the first year of suppression as reported by Craighead was non-existent.


2001 ◽  
Vol 77 (6) ◽  
pp. 1006-1013 ◽  
Author(s):  
James D. Stewart ◽  
Simon M. Landhäusser ◽  
Kenneth J. Stadt ◽  
Victor J. Lieffers

Successful mixedwood management in the boreal forest of Alberta requires better knowledge of the occurrence and success of natural white spruce regeneration. In this study we developed statistical models to predict the natural establishment and height growth of understory white spruce (Picea glauca (Moench) Voss) in the boreal mixedwood forest in Alberta using data from 148 provincial permanent sample plots, supplemented by measurements of the amount and height growth of regenerating white spruce, and the amount and type of available substrate. A discriminant model correctly classified 73% of the sites as to presence or absence of a white spruce understory based on the amount of spruce basal area, rotten wood, ecological nutrient regime, soil clay fraction and elevation, although it explained only 30% of the variation in the data. On sites with a white spruce understory, a regression model related the abundance of regeneration to rotten wood cover, spruce basal area, pine basal area, soil clay fraction, and grass cover (R2 = 0.36). About half of the seedlings surveyed grew on rotten wood, and only 3% on mineral soil, and seedlings were 10 times more likely to have established on these substrates than on litter. Exposed mineral soil was rare, covering only 0.3% of the observed transect area, rotten wood covered 4.5%, and litter/undisturbed forest floor covered the remainder. The regression models developed for average relative height growth rate included feather moss cover, stand age and birch basal area for seedlings ≤ 1 m (R2 = 0.23), and feather moss cover, elevation, other moss cover and soil clay fraction for seedlings between 1 m and 3 m (R2 = 0.27). Key words: Picea glauca, seedling establishment, seedbeds, site factors, coarse woody debris, predictive models, mixedwood management


2012 ◽  
Vol 42 (8) ◽  
pp. 1446-1455 ◽  
Author(s):  
Emilie Robert ◽  
Suzanne Brais ◽  
Brian D. Harvey ◽  
David Greene

In the boreal forest, establishment of tree regeneration is tightly linked to both mast years and the availability of adequate germination beds for seedlings. We took advantage of a mast year (2006) in the eastern boreal mixedwood to compare seedling establishment in 2007 and seedling survival 2 and 4 years later on sections of fallen logs and equivalent areas of adjacent forest floor. Several factors that could explain establishment of seedlings on logs were measured, including wood resistance, density, moisture content, and C/N ratio. Our results show that small-seeded species, such as white birch ( Betula papyrifera Marsh.) and white spruce ( Picea glauca (Moench) Voss), establish preferentially on logs whereas balsam fir ( Abies balsamea (L.) Mill.), a relatively large-seeded species, establishes more often on the forest floor. Using logistic regressions, we confirmed that the probability of seedling establishment on logs declines with wood resistance, while the survival probability is inversely proportional to stand deciduous basal area. Survival rate was similar for seedlings established on the forest floor and on logs. However, none of the white birch seedlings established on the forest floor in 2007 were alive by 2011. Even following an exceptional mast year, log occurrence in eastern mixedwood stands would not suffice to obtain adequate white spruce stocking levels.


2005 ◽  
Vol 35 (3) ◽  
pp. 667-673 ◽  
Author(s):  
G. Geoff Wang ◽  
Kevin J Kemball

Experimental seeding of balsam fir (Abies balsamea (L.) Mill.) and white spruce (Picea glauca (Moench) Voss) was implemented in three mature trembling aspen (Populus tremuloides Michx.) stands in southeastern Manitoba to test (i) the effect of vegetation (light) competition and seedbed type (undisturbed forest floor, exposed mineral soil, and rotten logs) on seedling recruitment over the first 2 years and (ii) the effect of broadleaf litter exclusion on seedling mortality during the first winter. The study indicated that, with adequate seed supply, seedbed type was the most important factor limiting seedling recruitment, especially the recruitment of white spruce, in trembling aspen stands. Seedling recruitment on the best and the worst seedbeds differed by 1.8 times for balsam fir but by 19 times for white spruce. Significant differences in soil moisture and temperature were found between seedbed types. Broadleaf litter exclusion also facilitated the recruitment of balsam fir and white spruce, but only on undisturbed forest floor. Vegetation (light) competition, however, did not limit seedling recruitment. On the contrary, the presence of understory vegetation benefited seedling recruitment on rotten logs. Compared with white spruce, balsam fir is better adapted to regenerate in trembling aspen stands. Balsam fir was about 4, 12, and 36 times better than white spruce when regenerating on exposed mineral soil, rotten log, and undisturbed forest floor, respectively.


2002 ◽  
Vol 78 (5) ◽  
pp. 732-738 ◽  
Author(s):  
Jean-Claude Ruel ◽  
Marius Pineau

White spruce (Picea glauca (Moench.) Voss.) is frequently found in association with balsam fir (Abies balsamea (L.) Mill.) in virgin stands. However, its regeneration is less aggressive than that of balsam fir. The persistance of white spruce in the canopy might be explained by differential mortality and windthrow. Windthrow could play an important role in creating favourable seedbeds and providing increased light. This paper examines the contribution of windthrow for white spruce regeneration in balsam fir-dominated forests. Experimental windthrows were created and regeneration establishment monitored for three seasons. Windthrow greatly modified the availability of seedbeds and enhanced white spruce establishment. Older natural windthrows were sampled to conclude that this effect was still evident more than five years after windthrow occured. We also noticed that white spruce benefited more from the disturbance than did balsam fir. Finally, sampling conducted in mature stands showed that mature white spruce stems were more abundant on the mounds created by old uprootings, indicating that this effect is maintained in the long term. Even though balsam fir also benefited from windthrow, the benefit was proportionally greater for white spruce. Key words: Picea glauca, Abies balsamea, windthrow, microtopography, regeneration


2020 ◽  
Vol 96 (01) ◽  
pp. 27-35
Author(s):  
Myriam Delmaire ◽  
Nelson Thiffault ◽  
Evelyne Thiffault ◽  
Julie Bouliane

Ecosystem-based management aims to maintain the natural proportion of native species over a given landscape. White spruce (Picea glauca (Moench) Voss) is a species sensitive to environmental conditions; it is especially demanding in terms of nutrients and its regeneration is negatively affected by clearcut harvesting. Its proportion is now significantly lower than what it was in the preindustrial forests of Québec (Canada). As a native species in boreal Québec, efforts to maintain its proportion in the landscape are undertaken for white spruce, but little is known about the best practices to maximize establishment success of seedlings planted in the balsam fir (Abies balsamea)–white birch (Betula papyrifera) bioclimatic domain. Our general objective was to identify planting practices as related to microsite treatment that favour white spruce sapling survival and size after 11 growing seasons following enrichment planting of sites harvested by mechanized careful logging in an ecosystem-based management context. We also aimed at comparing white spruce performance with that of black spruce (Picea mariana (Mill.) BSP), a native species that is less sensitive to abiotic stress. Finally, we wanted to assess stand composition at this juvenile stage, as a function of microsite treatment and planted species. Localized site preparation did not significantly affect growth or survival for white spruce compared to control conditions. Furthermore, localized site preparation did not increase the proportion of white and black spruce, as evaluated by basal area. Our results suggest that white spruce can be successfully established in enrichment planting in fir-dominated boreal forests, without site preparation.


Sign in / Sign up

Export Citation Format

Share Document