A method for estimating vulnerability of Douglas-fir growth to climate change in the northwestern U.S.

2005 ◽  
Vol 81 (3) ◽  
pp. 369-374 ◽  
Author(s):  
Jeremy S Littell ◽  
David L Peterson

Borrowing from landscape ecology, atmospheric science, and integrated assessment, we aim to understand the complex interactions that determine productivity in montane forests and utilize such relationships to forecast montane forest vulnerability under global climate change. Specifically, we identify relationships for precipitation and temperature that govern the spatiotemporal variability in Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) growth by seeking similarities in patterns of growth/climate models across a significant portion of the climatological range of the species. In the 21st century and beyond, sustainable forestry will depend on successful adaptation to the impacts of climate change and climate variability on forest structure and function. The combination of these foci will allow improved prediction of the fate of montane forests over a wide range of biogeoclimatic conditions in western North America and thus allow improved management strategies for adapting to climate change. We describe a multi-disciplinary strategy for analyzing growth variability as a function of climate over a broad range of local-to-regional influences and demonstrate the efficacy of this sampling method in defining regional gradients of growth-limiting factors. Key words: Douglas-fir, Pseudotsuga menziesii, climate variability, climate impacts, mechanism-response, tree rings, growth-climate relationships

Proceedings ◽  
2020 ◽  
Vol 36 (1) ◽  
pp. 157
Author(s):  
Van Touch ◽  
De Li Liu ◽  
Robert John Martin ◽  
Jeannette Fiona Scott ◽  
Annette Cowie ◽  
...  

Production of upland crops such as maize, cassava, soybean, mungbean, peanut and sesame contribute importantly to Cambodia’s economy and food security, especially for those who live in the upland areas found in almost every province of Cambodia. The upland farmers are highly vulnerable to climate variability and climate change due to low adaptive capacity and high dependence on rainfed crop production for their livelihoods. This study involved in-depth review of literature, conducting on-farm experiments, downscaling climate projections from the coupled Model Intercomparison Project Phase 5 (CMIP5) General Circulation Models (GCMs), running Agricultural Production Systems sIMulator (APSIM) simulations and farmer consultation to define climate impacts and explore adaptation options that could build resilience to the existing and projected climate change scenarios for upland cropping farmers in Northwest Cambodia. Insufficient water and nutrient depletion were the main production risks and yield limiting factors. On-farm adaptation options such as modifying sowing windows, including legumes in crop rotations and additional fertiliser application are likely to substantially minimise risks from climatic impacts, and increase and sustain returns. Wider adoption of conservation agriculture practices—including reduced tillage and crop residue retention, that enhance soil structure and soil water holding capacity and reduce soil erosion, should enhance productivity and incomes, while making the farming systems more resilient to the existing and projected climate variability and climate change, and other production stressors.


2021 ◽  
Vol 12 (4) ◽  
pp. 1393-1411
Author(s):  
Keith B. Rodgers ◽  
Sun-Seon Lee ◽  
Nan Rosenbloom ◽  
Axel Timmermann ◽  
Gokhan Danabasoglu ◽  
...  

Abstract. While climate change mitigation targets necessarily concern maximum mean state changes, understanding impacts and developing adaptation strategies will be largely contingent on how climate variability responds to increasing anthropogenic perturbations. Thus far Earth system modeling efforts have primarily focused on projected mean state changes and the sensitivity of specific modes of climate variability, such as the El Niño–Southern Oscillation. However, our knowledge of forced changes in the overall spectrum of climate variability and higher-order statistics is relatively limited. Here we present a new 100-member large ensemble of climate change projections conducted with the Community Earth System Model version 2 over 1850–2100 to examine the sensitivity of internal climate fluctuations to greenhouse warming. Our unprecedented simulations reveal that changes in variability, considered broadly in terms of probability distribution, amplitude, frequency, phasing, and patterns, are ubiquitous and span a wide range of physical and ecosystem variables across many spatial and temporal scales. Greenhouse warming in the model alters variance spectra of Earth system variables that are characterized by non-Gaussian probability distributions, such as rainfall, primary production, or fire occurrence. Our modeling results have important implications for climate adaptation efforts, resource management, seasonal predictions, and assessing potential stressors for terrestrial and marine ecosystems.


2008 ◽  
Vol 8 (16) ◽  
pp. 4621-4639 ◽  
Author(s):  
V. Grewe ◽  
A. Stenke

Abstract. Climate change is a challenge to society and to cope with requires assessment tools which are suitable to evaluate new technology options with respect to their impact on global climate. Here we present AirClim, a model which comprises a linearisation of atmospheric processes from the emission to radiative forcing, resulting in an estimate in near surface temperature change, which is presumed to be a reasonable indicator for climate change. The model is designed to be applicable to aircraft technology, i.e. the climate agents CO2, H2O, CH4 and O3 (latter two resulting from NOx-emissions) and contrails are taken into account. AirClim combines a number of precalculated atmospheric data with aircraft emission data to obtain the temporal evolution of atmospheric concentration changes, radiative forcing and temperature changes. These precalculated data are derived from 25 steady-state simulations for the year 2050 with the climate-chemistry model E39/C, prescribing normalised emissions of nitrogen oxides and water vapour at various atmospheric regions. The results show that strongest climate impacts (year 2100) from ozone changes occur for emissions in the tropical upper troposphere (60 mW/m2; 80 mK for 1 TgN/year emitted) and from methane changes from emissions in the middle tropical troposphere (−2.7% change in methane lifetime; –30 mK per TgN/year). For short-lived species (e.g. ozone, water vapour, methane) individual perturbation lifetimes are derived depending on the region of emission. A comparison of this linearisation approach with results from a comprehensive climate-chemistry model shows reasonable agreement with respect to concentration changes, radiative forcing, and temperature changes. For example, the total impact of a supersonic fleet on radiative forcing (mainly water vapour) is reproduced within 10%. A wide range of application is demonstrated.


Author(s):  
U. Rashid Sumaila

This chapter describes the literature of adaptation law in the context of international ocean governance. Adaptation law consists of rules aimed at minimizing the social costs associated with human response to climate impacts. These can be used to shape the behaviour of private actors or public institutions. The law sometimes might provide incentives to make enterprises more resilient as it makes capital unnecessarily stranded during climate change. In order to illustrate the challenges of implementation in the ocean context, the chapter focuses on two examples: international fisheries and ‘mari-engineering’. International fisheries represent ongoing ocean use and regulated by a well-developed body of international law. Due to the wide range of possible climate impacts and adaptive responses, proactive changes to existing fisheries rules in anticipation of climate change fit into the category of general adaptation law, while mari-engineering is engineering the seas to slow or halt climate change impacts.


2020 ◽  
Author(s):  
Xiaomeng Yin ◽  
Guoyong Leng

<p>Understanding historical crop yield response to climate change is critical for projecting future climate change impacts on yields. Previous assessments rely on statistical or process-based crop models, but each has its own strength and weakness. A comprehensive comparison of climate impacts on yield between the two approaches allows for evaluation of the uncertainties in future yield projections. Here we assess the impacts of historical climate change on global maize yield for the period 1980-2010 using both statistical and process-based models, with a focus on comparing the performances between the two approaches. To allow for reasonable comparability, we develop an emulator which shares the same structure with the statistical model to mimic the behaviors of process-based models. Results show that the simulated maize yields in most of the top 10 producing countries are overestimated, when compared against FAO observations. Overall, GEPIC, EPIC-IIASA and EPIC-Boku show better performance than other models in reproducing the observed yield variations at the global scale. Climate variability explains 42.00% of yield variations in observation-based statistical model, while large discrepancy is found in crop models. Regionally, climate variability is associated with 55.0% and 52.20% of yield variations in Argentina and USA, respectively. Further analysis based on process-based model emulator shows that climate change has led to a yield loss by 1.51%-3.80% during the period 1980-1990, consistent with the estimations using the observation-based statistical model. As for the period 1991-2000, however, the observed yield loss induced by climate change is only captured by GEPIC and pDSSAT. In contrast to the observed positive climate impact for the period 2001-2010, CLM-Crop, EPIC-IIASA, GEPIC, pAPSIM, pDSSAT and PEGASUS simulated negative climate effects. The results point to the discrepancy between process-based and statistical crop models in simulating climate change impacts on maize yield, which depends on not only the regions, but also the specific time period. We suggest that more targeted efforts are required for constraining the uncertainties of both statistical and process-based crop models for future yield predictions. </p>


2015 ◽  
Vol 21 (10) ◽  
pp. 3814-3826 ◽  
Author(s):  
Sheel Bansal ◽  
J. Bradley St. Clair ◽  
Constance A. Harrington ◽  
Peter J. Gould

2021 ◽  
Author(s):  
Keith B. Rodgers ◽  
Sun-Seon Lee ◽  
Nan Rosenbloom ◽  
Axel Timmermann ◽  
Gokhan Danabasoglu ◽  
...  

Abstract. While climate change mitigation targets necessarily concern maximum mean state change, understanding impacts and developing adaptation strategies will be largely contingent on how climate variability responds to increasing anthropogenic perturbations. Thus far Earth system modeling efforts have primarily focused on projected mean state changes and the sensitivity of specific modes of climate variability, such as the El Niño-Southern Oscillation. However, our knowledge of forced changes in the overall spectrum of climate variability and higher order statistics is relatively limited. Here we present a new 100-member large ensemble of climate change projections conducted with the Community Earth System Model version 2 to examine the sensitivity of internal climate fluctuations to greenhouse warming. Our unprecedented simulations reveal that changes in variability, considered broadly in terms of probability, distribution, amplitude, frequency, phasing, and patterns, are ubiquitous and span a wide range of physical and ecosystem variables across many spatial and temporal scales. Greenhouse warming will in particular alter variance spectra of Earth system variables that are characterized by non-Gaussian probability distributions, such as rainfall, primary production, or fire occurrence. Our modeling results have important implications for climate adaptation efforts, resource management, seasonal predictions, and for assessing potential stressors for terrestrial and marine ecosystems.


2012 ◽  
Vol 163 (3) ◽  
pp. 70-78 ◽  
Author(s):  
Aaron R. Weiskittel ◽  
Nicholas L. Crookston ◽  
Gerald E. Rehfeldt

Projected future suitable habitat and productivity of Douglas-fir in western North America Douglas-fir (Pseudotsuga menziesii [Mirb.] Franco) is one of the most common and commercially important species in western North America. The species can occupy a range of habitats, is long-lived (up to 500 years), and highly productive. However, the future of Douglas-fir in western North America is highly uncertain due to the expected changes in climate conditions. This analysis presents a summary of work that utilizes an extensive network of inventory plots to project potential future changes in Douglas-fir habitat and productivity. By 2090, the amount of potential Douglas-fir habitat is projected to change little in terms of area (−4%). However, the habitat is expected to shift from coastal areas of North America to the interior. Corresponding changes in productivity are also projected as coastal areas experience reductions, while interior areas experience modest increases in productivity. Overall, the analysis indicates a sensitivity of Douglas-fir to climate and suggests that significant changes in North America are to be expected under climate change.


2018 ◽  
Vol 4 (4) ◽  
pp. 605-623 ◽  
Author(s):  
Christopher Bolduc ◽  
Scott F. Lamoureux

Water temperature measurements (2004–2016) from two small rivers in the High Arctic were analyzed to determine the effects of climate variability on thermal regime and the sensitivity to climate change. The East and West rivers (unofficial names) drain similar watersheds (11.6 and 8.0 km2, respectively) and are located at the Cape Bounty Arctic Watershed Observatory (CBAWO), Melville Island, Canada (74°55′N, 109°35′W). Differences in seasonal timing of river temperatures were evident when comparing the coldest and warmest years of the study period, and across different discharge conditions. Snowmelt runoff is characterized by uniformly cold water (∼0–1 °C) over a wide range of discharge conditions, followed by warming water temperatures during flow recession. The rivers showed varying sensitivity to mid-summer air temperature conditions in a given year, with warmer years indicating high correlation (r2 = 0.794–0.929), whereas colder years showed reduced correlation (r2 = 0.368–0.778). River temperatures reached levels which are reported to negatively affect fish and other cold-water aquatic species (>18 °C) with greater frequency and duration during the warmest years. These results provide a basis to further enhance prediction of river thermal conditions to assess ecosystem health in a river system and to refine insights into the effects of climate change on High Arctic aquatic ecosystems.


Sign in / Sign up

Export Citation Format

Share Document