scholarly journals Ubiquity of human-induced changes in climate variability

2021 ◽  
Vol 12 (4) ◽  
pp. 1393-1411
Author(s):  
Keith B. Rodgers ◽  
Sun-Seon Lee ◽  
Nan Rosenbloom ◽  
Axel Timmermann ◽  
Gokhan Danabasoglu ◽  
...  

Abstract. While climate change mitigation targets necessarily concern maximum mean state changes, understanding impacts and developing adaptation strategies will be largely contingent on how climate variability responds to increasing anthropogenic perturbations. Thus far Earth system modeling efforts have primarily focused on projected mean state changes and the sensitivity of specific modes of climate variability, such as the El Niño–Southern Oscillation. However, our knowledge of forced changes in the overall spectrum of climate variability and higher-order statistics is relatively limited. Here we present a new 100-member large ensemble of climate change projections conducted with the Community Earth System Model version 2 over 1850–2100 to examine the sensitivity of internal climate fluctuations to greenhouse warming. Our unprecedented simulations reveal that changes in variability, considered broadly in terms of probability distribution, amplitude, frequency, phasing, and patterns, are ubiquitous and span a wide range of physical and ecosystem variables across many spatial and temporal scales. Greenhouse warming in the model alters variance spectra of Earth system variables that are characterized by non-Gaussian probability distributions, such as rainfall, primary production, or fire occurrence. Our modeling results have important implications for climate adaptation efforts, resource management, seasonal predictions, and assessing potential stressors for terrestrial and marine ecosystems.

2021 ◽  
Author(s):  
Keith B. Rodgers ◽  
Sun-Seon Lee ◽  
Nan Rosenbloom ◽  
Axel Timmermann ◽  
Gokhan Danabasoglu ◽  
...  

Abstract. While climate change mitigation targets necessarily concern maximum mean state change, understanding impacts and developing adaptation strategies will be largely contingent on how climate variability responds to increasing anthropogenic perturbations. Thus far Earth system modeling efforts have primarily focused on projected mean state changes and the sensitivity of specific modes of climate variability, such as the El Niño-Southern Oscillation. However, our knowledge of forced changes in the overall spectrum of climate variability and higher order statistics is relatively limited. Here we present a new 100-member large ensemble of climate change projections conducted with the Community Earth System Model version 2 to examine the sensitivity of internal climate fluctuations to greenhouse warming. Our unprecedented simulations reveal that changes in variability, considered broadly in terms of probability, distribution, amplitude, frequency, phasing, and patterns, are ubiquitous and span a wide range of physical and ecosystem variables across many spatial and temporal scales. Greenhouse warming will in particular alter variance spectra of Earth system variables that are characterized by non-Gaussian probability distributions, such as rainfall, primary production, or fire occurrence. Our modeling results have important implications for climate adaptation efforts, resource management, seasonal predictions, and for assessing potential stressors for terrestrial and marine ecosystems.


2021 ◽  
Author(s):  
Keith Rodgers ◽  
Sun-Seon Lee ◽  
Nan Rosenbloom ◽  
Axel Timmermann ◽  
Gokhan Danabasoglu ◽  
...  

While climate change mitigation targets necessarily concern maximum mean state changes, understanding impacts and developing adaptation strategies will be largely contingent on how climate variability responds to increasing anthropogenic perturbations. Here we present a new 100-member large ensemble of climate change projections conducted with the Community Earth System Model version 2 to examine the sensitivity of internal climate fluctuations to greenhouse warming. Our unprecedented simulations reveal that changes in variability, considered broadly in terms of probability distribution, amplitude, frequency, phasing, and patterns, are ubiquitous and span a wide range of physical and ecosystem variables across many spatial and temporal scales. Greenhouse warming will in particular alter variance spectra of Earth system variables that are characterized by non-Gaussian probability distributions, such as rainfall, primary production or fire occurrence. Our modeling results have important implications for climate adaptation efforts, resource management, and for seasonal predictions.


2012 ◽  
Vol 1 (1) ◽  
Author(s):  
Johnny Chavarría Viteri ◽  
Dennis Tomalá Solano

La variabilidad climática es la norma que ha modulado la vida en el planeta. Este trabajo demuestra que las pesquerías y acuicultura costera ecuatorianas no son la excepción, puesto que tales actividades están fuertemente influenciadas por la variabilidad ENSO (El Niño-Oscilación del Sur) y PDO (Oscilación Decadal del Pacífico), planteándose que la señal del cambio climático debe contribuir a esta influencia. Se destaca también que, en el análisis de los efectos de la variabilidad climática sobre los recursos pesqueros, el esfuerzo extractivo también debe ser considerado. Por su parte, la acción actual de la PDO está afectando la señal del cambio climático, encontrándose actualmente en fases opuestas. Se espera que estas señales entren en fase a finales de esta década, y principalmente durante la década de los 20 y consecuentemente se evidencien con mayor fuerza los efectos del Cambio Climático. Palabras Clave: Variabilidad Climática, Cambio Climático, ENSO, PDO, Pesquerías, Ecuador. ABSTRACT Climate variability is the standard that has modulated life in the planet. This work shows that the Ecuadorian  fisheries and aquaculture are not the exception, since such activities are strongly influenced by ENSO variability (El Niño - Southern Oscillation) and PDO (Pacific Decadal Oscillation), considering that the signal of climate change should contribute to this influence. It also emphasizes that in the analysis of the effects of climate variability on the fishing resources, the extractive effort must also be considered. For its part, the current action of the PDO is affecting the signal of climate change, now found on opposite phases. It is hoped that these signals come into phase at the end of this decade, and especially during the decade of the 20’s and more strongly evidencing the effects of climate change. Keywords: Climate variability, climate change, ENSO (El Niño - Southern Oscillation) and PDO  (Pacific Decadal Oscillation); fisheries, Ecuador. Recibido: mayo, 2012Aprobado: agosto, 2012


2014 ◽  
Vol 11 (5) ◽  
pp. 7685-7719 ◽  
Author(s):  
M. Broich ◽  
A. Huete ◽  
M. G. Tulbure ◽  
X. Ma ◽  
Q. Xin ◽  
...  

Abstract. Land surface phenological cycles of vegetation greening and browning are influenced by variability in climatic forcing. Quantitative information on phenological cycles and their variability is important for agricultural applications, wildfire fuel accumulation, land management, land surface modeling, and climate change studies. Most phenology studies have focused on temperature-driven Northern Hemisphere systems, where phenology shows annually reoccurring patterns. Yet, precipitation-driven non-annual phenology of arid and semi-arid systems (i.e. drylands) received much less attention, despite the fact that they cover more than 30% of the global land surface. Here we focused on Australia, the driest inhabited continent with one of the most variable rainfall climates in the world and vast areas of dryland systems. Detailed and internally consistent studies investigating phenological cycles and their response to climate variability across the entire continent designed specifically for Australian dryland conditions are missing. To fill this knowledge gap and to advance phenological research, we used existing methods more effectively to study geographic and climate-driven variability in phenology over Australia. We linked derived phenological metrics with rainfall and the Southern Oscillation Index (SOI). We based our analysis on Enhanced Vegetation Index (EVI) data from the MODerate Resolution Imaging Spectroradiometer (MODIS) from 2000 to 2013, which included extreme drought and wet years. We conducted a continent-wide investigation of the link between phenology and climate variability and a more detailed investigation over the Murray–Darling Basin (MDB), the primary agricultural area and largest river catchment of Australia. Results showed high inter- and intra-annual variability in phenological cycles. Phenological cycle peaks occurred not only during the austral summer but at any time of the year, and their timing varied by more than a month in the interior of the continent. The phenological cycle peak magnitude and integrated greenness were most significantly correlated with monthly SOI within the preceding 12 months. Correlation patterns occurred primarily over north-eastern Australia and within the MDB predominantly over natural land cover and particularly in floodplain and wetland areas. Integrated greenness of the phenological cycles (surrogate of productivity) showed positive anomalies of more than two standard deviations over most of eastern Australia in 2009–2010, which coincided with the transition between the El Niño induced decadal droughts to flooding caused by La Niña. The quantified spatial-temporal variability in phenology across Australia in response to climate variability presented here provides important information for land management and climate change studies and applications.


2019 ◽  
Vol 12 (7) ◽  
pp. 3099-3118 ◽  
Author(s):  
Kristian Strommen ◽  
Hannah M. Christensen ◽  
Dave MacLeod ◽  
Stephan Juricke ◽  
Tim N. Palmer

Abstract. We introduce and study the impact of three stochastic schemes in the EC-Earth climate model: two atmospheric schemes and one stochastic land scheme. These form the basis for a probabilistic Earth system model in atmosphere-only mode. Stochastic parametrization have become standard in several operational weather-forecasting models, in particular due to their beneficial impact on model spread. In recent years, stochastic schemes in the atmospheric component of a model have been shown to improve aspects important for the models long-term climate, such as El Niño–Southern Oscillation (ENSO), North Atlantic weather regimes, and the Indian monsoon. Stochasticity in the land component has been shown to improve the variability of soil processes and improve the representation of heatwaves over Europe. However, the raw impact of such schemes on the model mean is less well studied. It is shown that the inclusion of all three schemes notably changes the model mean state. While many of the impacts are beneficial, some are too large in amplitude, leading to significant changes in the model's energy budget and atmospheric circulation. This implies that in order to maintain the benefits of stochastic physics without shifting the mean state too far from observations, a full re-tuning of the model will typically be required.


2020 ◽  
Author(s):  
José J. Hernandez Ayala ◽  
Rafael Méndez-Tejeda

Abstract. This article analyzes the relationship between off-season tropical cyclone (TC) frequency and climate variability and change for the Pacific and Atlantic Ocean basins. TC track data was used to extract the off-season storms for the 1900–2019 period. TC counts were aggregated by decade and the number of storms for the first six decades (pre-satellite era) was adjusted. Mann-Kendall non-parametric tests were used to identify trends in decadal TC counts and multiple linear regression models (MRL) were used to test if climatic variability or climate change factors explained the trends in off-season storms. MRL stepwise procedures were implemented to identify the climate variability and change factors that explained most of the variability in off-season TC frequency. A total of 713 TCs were identified as occurring earlier or later than their peak seasons, most during the month of May and in the West Pacific and South Pacific basins. The East Pacific (EP), North Atlantic (NA) and West Pacific (WP) basins exhibit significant increasing trends in decadal off-season TC frequency. MRL results show that trends in sea surface temperature, global mean surface temperature, and cloud cover explain most of the increasing trend in decadal off-season TC counts in the EP, NA, and WP basins. Stepwise MLR results also identified climate change variables as the dominant forces behind increasing trends in off-season TC decadal counts, yet they also showed that climate variability factors like El Niño-Southern Oscillation, the Atlantic Multidecadal Oscillation, and the Interdecadal Pacific Oscillation also account for a portion of the variability.


2021 ◽  
Author(s):  
Fabrizio Falasca ◽  
Julien Crétat ◽  
Annalisa Bracco ◽  
Pascale Braconnot ◽  
Olivier Marti

Abstract Changes in climate mean state profoundly impact climate variability. Here, we quantify slow changes in the mean climate induced by the variations in the Earth’s orbit from mid- to late Holocene, and their feedback on the main modes of climate variability. We focus on the Indo-Pacific system and show that mid-Holocene conditions favored the dominance of an equatorial dipole mode in the Indian Ocean (IO), independent of the El Niño Southern Oscillation (ENSO) and different from the IO Dipole (IOD) observed today. Mean state changes induced a gradual shift to an IO basin mode that along with the IOD modulates most of the IO variance at present. The climate modes evolution and their connectivity changes are investigated over 6,000 years using a complex network methodology and principal component analysis. To characterize the nature of this transition, we explore the trajectory of the Indo-Pacific climate by accounting for its spatiotemporal and multivariable dependency. The full trajectory of the system is explored from a dynamical system perspective by constructing a state space representation. The manifold embedded in the 104 -dimensional state space provides a compact representation of the system evolution and points to a gradual shift of the basin of attractions in the tropics. This approach, together with a mean state analysis, reveals that a strengthening of the Walker circulation set the stage for a shift in modes in both basins.


2020 ◽  
Vol 20 (4) ◽  
Author(s):  
Joanna Pardoe ◽  
Katharine Vincent ◽  
Declan Conway ◽  
Emma Archer ◽  
Andrew J. Dougill ◽  
...  

AbstractIn this paper, we use an inductive approach and longitudinal analysis to explore political influences on the emergence and evolution of climate change adaptation policy and planning at national level, as well as the institutions within which it is embedded, for three countries in sub-Saharan Africa (Malawi, Tanzania and Zambia). Data collection involved quantitative and qualitative methods applied over a 6-year period from 2012 to 2017. This included a survey of 103 government staff (20 in Malawi, 29 in Tanzania and 54 in Zambia) and 242 interviews (106 in Malawi, 86 in Tanzania and 50 in Zambia) with a wide range of stakeholders, many of whom were interviewed multiple times over the study period, together with content analysis of relevant policy and programme documents. Whilst the climate adaptation agenda emerged in all three countries around 2007–2009, associated with multilateral funding initiatives, the rate and nature of progress has varied—until roughly 2015 when, for different reasons, momentum slowed. We find differences between the countries in terms of specifics of how they operated, but roles of two factors in common emerge in the evolution of the climate change adaptation agendas: national leadership and allied political priorities, and the role of additional funding provided by donors. These influences lead to changes in the policy and institutional frameworks for addressing climate change, as well as in the emphasis placed on climate change adaptation. By examining the different ways through which ideas, power and resources converge and by learning from the specific configurations in the country examples, we identify opportunities to address existing barriers to action and thus present implications that enable more effective adaptation planning in other countries. We show that more socially just and inclusive national climate adaptation planning requires a critical approach to understanding these configurations of power and politics.


2015 ◽  
Vol 19 (10) ◽  
pp. 4081-4098 ◽  
Author(s):  
T. I. E. Veldkamp ◽  
S. Eisner ◽  
Y. Wada ◽  
J. C. J. H. Aerts ◽  
P. J. Ward

Abstract. Globally, freshwater shortage is one of the most dangerous risks for society. Changing hydro-climatic and socioeconomic conditions have aggravated water scarcity over the past decades. A wide range of studies show that water scarcity will intensify in the future, as a result of both increased consumptive water use and, in some regions, climate change. Although it is well-known that El Niño–Southern Oscillation (ENSO) affects patterns of precipitation and drought at global and regional scales, little attention has yet been paid to the impacts of climate variability on water scarcity conditions, despite its importance for adaptation planning. Therefore, we present the first global-scale sensitivity assessment of water scarcity to ENSO, the most dominant signal of climate variability. We show that over the time period 1961–2010, both water availability and water scarcity conditions are significantly correlated with ENSO-driven climate variability over a large proportion of the global land area (> 28.1 %); an area inhabited by more than 31.4 % of the global population. We also found, however, that climate variability alone is often not enough to trigger the actual incidence of water scarcity events. The sensitivity of a region to water scarcity events, expressed in terms of land area or population exposed, is determined by both hydro-climatic and socioeconomic conditions. Currently, the population actually impacted by water scarcity events consists of 39.6 % (CTA: consumption-to-availability ratio) and 41.1 % (WCI: water crowding index) of the global population, whilst only 11.4 % (CTA) and 15.9 % (WCI) of the global population is at the same time living in areas sensitive to ENSO-driven climate variability. These results are contrasted, however, by differences in growth rates found under changing socioeconomic conditions, which are relatively high in regions exposed to water scarcity events. Given the correlations found between ENSO and water availability and scarcity conditions, and the relative developments of water scarcity impacts under changing socioeconomic conditions, we suggest that there is potential for ENSO-based adaptation and risk reduction that could be facilitated by more research on this emerging topic.


2018 ◽  
Vol 4 (4) ◽  
pp. 605-623 ◽  
Author(s):  
Christopher Bolduc ◽  
Scott F. Lamoureux

Water temperature measurements (2004–2016) from two small rivers in the High Arctic were analyzed to determine the effects of climate variability on thermal regime and the sensitivity to climate change. The East and West rivers (unofficial names) drain similar watersheds (11.6 and 8.0 km2, respectively) and are located at the Cape Bounty Arctic Watershed Observatory (CBAWO), Melville Island, Canada (74°55′N, 109°35′W). Differences in seasonal timing of river temperatures were evident when comparing the coldest and warmest years of the study period, and across different discharge conditions. Snowmelt runoff is characterized by uniformly cold water (∼0–1 °C) over a wide range of discharge conditions, followed by warming water temperatures during flow recession. The rivers showed varying sensitivity to mid-summer air temperature conditions in a given year, with warmer years indicating high correlation (r2 = 0.794–0.929), whereas colder years showed reduced correlation (r2 = 0.368–0.778). River temperatures reached levels which are reported to negatively affect fish and other cold-water aquatic species (>18 °C) with greater frequency and duration during the warmest years. These results provide a basis to further enhance prediction of river thermal conditions to assess ecosystem health in a river system and to refine insights into the effects of climate change on High Arctic aquatic ecosystems.


Sign in / Sign up

Export Citation Format

Share Document