scholarly journals Trichostatin A, a potential drug for treatment of animal Babesia infections

2014 ◽  
Vol 11 (2) ◽  
pp. 24-26 ◽  
Author(s):  
T Nyamjargal ◽  
N Oshima ◽  
X Xuan ◽  
I Igarashi ◽  
T Munkhjargal ◽  
...  

In the present study, we evaluated the inhibitory effect of trichostatin A on the asexual growth of bovine, equine, and canine Babesia parasites in vitro as well as on the in vivo growth of Babesia microti (B.microti) in mice. The growth of Babesia bovis (B.bovis), Babesia bigemina (B.bigemina), Babesia caballi (B.caballi), Theileria equi (T.equi), and Babesia gibsoni (B.gibsoni) species was significantly inhibited (P < 0.05) by very low concentrations of trichostatin A (IC50 values = 2.6, 2.4, 2.3, 2.4, and 2.3 nM, respectively). Furthermore, in B.microti-infected mice, trichostatin A caused significant higher (P < 0.05) inhibition of the growth of B.microti at the dose of 2 mg/kg body weight than that in the control group. These results indicated the trichostatin A might be a chemotherapeutic agent for treatment of babesiosis. DOI: http://dx.doi.org/10.5564/mjas.v11i2.210 Mongolian Journal of Agricultural Sciences Vol.11(2) 2013 pp.24-26


2012 ◽  
Vol 56 (6) ◽  
pp. 3196-3206 ◽  
Author(s):  
Mahmoud AbouLaila ◽  
Tserendorj Munkhjargal ◽  
Thillaiampalam Sivakumar ◽  
Akio Ueno ◽  
Yuki Nakano ◽  
...  

ABSTRACTThe apicoplast housekeeping machinery, specifically apicoplast DNA replication, transcription, and translation, was targeted by ciprofloxacin, thiostrepton, and rifampin, respectively, in thein vitrocultures of fourBabesiaspecies. Furthermore, thein vivoeffect of thiostrepton on the growth cycle ofBabesia microtiin BALB/c mice was evaluated. The drugs caused significant inhibition of growth from an initial parasitemia of 1% forBabesia bovis, with 50% inhibitory concentrations (IC50s) of 8.3, 11.5, 12, and 126.6 μM for ciprofloxacin, thiostrepton, rifampin, and clindamycin, respectively. The IC50s for the inhibition ofBabesia bigeminagrowth were 15.8 μM for ciprofloxacin, 8.2 μM for thiostrepton, 8.3 μM for rifampin, and 206 μM for clindamycin. The IC50s forBabesia caballiwere 2.7 μM for ciprofloxacin, 2.7 μM for thiostrepton, 4.7 μM for rifampin, and 4.7 μM for clindamycin. The IC50s for the inhibition ofBabesia equigrowth were 2.5 μM for ciprofloxacin, 6.4 μM for thiostrepton, 4.1 μM for rifampin, and 27.2 μM for clindamycin. Furthermore, an inhibitory effect was revealed for cultures with an initial parasitemia of either 10 or 7% forBabesia bovisorBabesia bigemina, respectively. The three inhibitors caused immediate death ofBabesia bovisandBabesia equi. The inhibitory effects of ciprofloxacin, thiostrepton, and rifampin were confirmed by reverse transcription-PCR. Thiostrepton at a dose of 500 mg/kg of body weight resulted in 77.5% inhibition ofBabesia microtigrowth in BALB/c mice. These results implicate the apicoplast as a potential chemotherapeutic target for babesiosis.



Pathogens ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 173 ◽  
Author(s):  
Mahmoud AbouLaila ◽  
Shimaa Abd El-Salam El-Sayed ◽  
Mosaab A. Omar ◽  
Mohammad Saleh Al-Aboody ◽  
Amer R. Abdel Aziz ◽  
...  

The present experimental study was conducted for the assessment of the efficacy of in vitro inhibition of myrrh oil on the propagation of Babesia bovis, B. divergens, B. bigemina, Theileria equi, and B. caballi and in vivo efficacy on B. microti in mice through fluorescence assay based on SYBR green I. The culture of B. divergens B. bovis and was used to evaluate the in vitro possible interaction between myrrh oil and other commercial compound, such as pyronaridine tetraphosphate (PYR), diminazene aceturate (DA), or luteolin. Nested-polymerase chain reaction protocol using primers of the small-subunit rRNA of B. microti was employed to detect any remnants of DNA for studied parasitic species either in blood or tissues. Results elucidated that; Myrrh oil significantly inhibit the growth at 1% of parasitic blood level for all bovine and equine piroplasm under the study. Parasitic regrowth was inhibited subsequently by viability test at 2 µg/mL for B. bigemina and B. bovis, and there was a significant improvement in the in vitro growth inhibition by myrrh oil when combined with DA, PYR, and luteolin. At the same time; mice treated with a combination of myrrh oil/DA showed a higher inhibition in emitted fluorescence signals than the group that challenged with 25 mg/kg of diminazene aceturate at 10 and 12 days post-infection. In conclusion, this study has recommended the myrrh oil to treat animal piroplasmosis, especially in combination with low doses of DA.



2022 ◽  
Vol 15 (1) ◽  
Author(s):  
Shengwei Ji ◽  
Mingming Liu ◽  
Eloiza May Galon ◽  
Mohamed Abdo Rizk ◽  
Bumduuren Tuvshintulga ◽  
...  

Abstract Background Drug resistance and toxic side effects are major challenges in the treatment of babesiosis. As such, new drugs are needed to combat the emergence of drug resistance in Babesia parasites and to develop alternative treatment strategies. A combination of naphthoquine (NQ) and artemisinin is an antimalarial therapy in pharmaceutical markets. The present study repurposed NQ as a drug for the treatment of babesiosis by evaluating the anti-Babesia activity of naphthoquine phosphate (NQP) alone. Methods An in vitro growth inhibition assay of NQP was tested on Babesia gibsoni cultures using a SYBR Green I-based fluorescence assay. In addition, the in vivo growth inhibitory effect of NQP was evaluated using BALB/c mice infected with Babesia rodhaini. The parasitemia level and hematocrit values were monitored to determine the therapeutic efficacy of NQP and the clinical improvements in NQP-treated mice. Results The half maximal inhibitory concentration of NQP against B. gibsoni in vitro was 3.3 ± 0.5 μM. Oral administration of NQP for 5 consecutive days at a dose of 40 mg/kg of body weight resulted in significant inhibition of B. rodhaini growth in mice as compared with that of the control group. All NQP-treated mice survived, whereas the mice in the control group died between days 6 and 9 post-infection. Conclusion This is the first study to evaluate the anti-Babesia activity of NQP in vitro and in vivo. Our findings suggest that NQP is a promising drug for treating Babesia infections, and drug repurposing may provide new treatment strategies for babesiosis. Graphical Abstract



2019 ◽  
pp. 1-6
Author(s):  
Ikuo Igarashi ◽  
Naoaki Yokoyama ◽  
Akram Salama ◽  
Amer AbdEl-Aziz ◽  
Mahmoud AbouLaila ◽  
...  

Objectives: Enrofloxacin, a fluoroquinolone antibiotic, is an inhibitor of prokaryotic topoisomerase II with antibacterial and antiparasitic activities. The study aimed to evaluate the inhibitory effect of enrofloxacin on Babesia species and Theileria equi in vitro and in vivo. Methods: The inhibitory effects of enrofloxacin were evaluated in vitro cultures using in vitro inhibition assay of three Babesia species and Theileria equi; furthermore, the in vivo inhibitory effect of enrofloxacin was evaluated in the mice model of Babesia microti. Results: The IC50 values of enrofloxacin were 4.9, 4.5, 4, and 3.9 nM for B. bovis, B. bigemina, B. caballi, and B. equi, respectively. Enrofloxacin at a dose rate of 10 mg/kg resulted in a 92.9 % inhibition of Babesia microti growth in BALB/c mice. Combination therapy of enrofloxacin at a dose rate of 5 mg/kg with diminazene aceturate at a dose rate of 12.5 mg/kg resulted in 93.83 % inhibition of Babesia microti growth in BALB/c mice. Conclusions: Enrofloxacin might be used for drug therapy in babesiosis.



Author(s):  
Marta G. Silva ◽  
Nicolas F. Villarino ◽  
Donald P. Knowles ◽  
Carlos E. Suarez


Author(s):  
Peng Wang ◽  
Xiao-Xia Hu ◽  
Ying-hui Li ◽  
Nan-Yong Gao ◽  
Guo-quan Chen ◽  
...  

This study was to evaluate the effect of resveratrol on the pharmacokinetics of ticagrelor in rats and the metabolism of ticagrelor in human CYP3A4 and liver microsomes. Eighteen Sprague-Dawley rats were randomly divided into three groups: group A (control group), group B (50mg/kg resveratrol), and group C (150mg/kg resveratrol ). After 30 minutes administration of resveratrol, a single dose of ticagrelor (18mg/kg) was administered orally. The vitro experiment was performed to examine the influence of resveratrol on ticagrelor metabolism in CYP3A4*1, human, and rat liver microsomes. Serial biological samples were assayed by validated UHPLC-MS/MS methods. In vivo study, the AUC and Cmax of ticagrelor in group B and C appeared to be significantly higher than the control group, while Vz/F and CLz/F of ticagrelor in group B and C were significantly decreased. In vitro study, resveratrol exhibited an inhibitory effect on CYP3A4*1, human and rat liver microsomes. The IC50 values of resveratrol were 56.75μM,69.07μM and 14.22μM, respectively. Our results indicated that resveratrol had a inhibitory effect on the metabolism of ticagrelor in vitro and vivo. It should be paid more attention to the clinical combination of resveratrol with ticagrelor and ticagrelor plasma concentration should be monitored to avoid the occurrence of adverse reaction.



Dose-Response ◽  
2020 ◽  
Vol 18 (3) ◽  
pp. 155932582093942
Author(s):  
Muhammad Younus ◽  
Muhammad Mohtasheem ul Hasan ◽  
Khalil Ahmad ◽  
Ali Sharif ◽  
Hafiz Muhammad Asif ◽  
...  

In this study, we aimed to investigate the antidiabetic effects of Euphorbia nivulia (En), native to Cholistan Desert area of Bahawalpur, Pakistan. First, we performed high-performance liquid chromatography analysis and found that this plant contains ferulic acid, gallic acid, quercetin, benzoic acid, polyphenols, and flavonoids. Then, we performed in vitro and in vivo studies to assess its effects on diabetic Wistar rat model. The experiments were performed and compared with control drug glibenclamide. The 70% hydroalcoholic extract of En exhibited 97.8% in vitro α-glucosidase inhibitory effect at a dose of 1.0 mg/mL. We orally administered the extract of En and control drug to the streptozotocin (STZ)-induced diabetic rats and analyzed its antidiabetic effects. We found that the extract of En with a dose of 500 mg/kg/body weight exhibited significant effect to reduce blood glucose in STZ-induced rats as compared with the control group ( P < .001). Our histological data also showed that the extract significantly improved the histopathology of pancreas. Collectively, both in vitro and in vivo studies revealed that En possesses α-glucosidase inhibitory, antioxidant, and anti-hyperglycemic effect in STZ-induced diabetic rats.



2008 ◽  
Vol 77 (4) ◽  
pp. 581-588 ◽  
Author(s):  
R. Szabóová ◽  
A. Lauková ◽  
Ľ. Chrastinová ◽  
M. Simonová ◽  
V. Strompfová ◽  
...  

Salvia spp. belongs to the Labiatae family and is characterized by antimicrobial and antiinflammatory effect. The aim of this study was to test its in vitro and in vivo inhibitory effect against bacteria as well as to find an alternative possibility to use sage in the rabbit ecosystem examining biochemical, zootechnical and inmunological indicators, compared to the commercial feed mixture Xtract. Using the sage extract in in vitro tests, its inhibitory effect was noted. Under in vivo conditions, in the experimental group with sage (EG1), reduction of Pseudomonas-like sp. (p < 0.01) and E. coli (p < 0.01) was noted after 7 days of sage application compared to the control group CG2 (with Robenidin) as well as after 21 days of sage extract application, when the reduction of coagulase-negative staphylococci (p < 0.01) was detected (in comparison with the experimental group-EG2, Xtract group). In the caecum of rabbits from EG1, higher values of lactic, acetic and butyric acids were noted. The values of propionic acid were not influenced. Biochemical indicators were not influenced; however, the values of GSH Px were lower in EG1 compared to EG2. Higher phagocytic activity (18%) was noted in EG1 than in EG2 (13%) after 21 days of additives application. The reduction of Eimeria sp. oocysts was demonstrated in EG1 (sage group) after 7 days of sage application comparing to CG2 (217 OPG to 566 OPG). The animals in both experimental groups achieved higher feed consumption and weight gain, lower mortality compared to both controls. Neither of the additives had a negative influence on the health status and growth performance of rabbits.



2020 ◽  
pp. 18-26
Author(s):  
I. Sani ◽  
A.A. Umar ◽  
S.A. Jiga ◽  
F. Bello ◽  
A. Abdulhamid ◽  
...  

Several studies have been reported on active peptides isolated from some medicinal plants, which were effective inhibitors against snake venom induced toxicities. Hence, the aim of this research work was to isolate, purify and characterize an antisnake venom plant peptide from Bauhinia rufescens seed that can serve as potential alternative to serum-based antivenins. B. rufescens seed was collected, duly identified, authenticated and processed. The peptide was isolated from the seed and purified using gel filtration chromatography and SDS-PAGE and then named as BRS-P19. Venom Phospholipase A2 (VPLA2) was used for the study and was isolated from Naja nigricollis venom. Albino mice of both sexes were used for in vivo experiments. They were divided into seven (7) groups of three (3) mice each. Group 1 served as normal control, group 2 were injected with VPLA2 only, group 3 and 4 were injected with VPLA2 then treated with BRS-P19 at doses of 0.2 and 0.4 mg/kg b.w. respectively, while mice in group 5 were injected with VPLA2 then treated with standard antivenin, group 6 and 7 were injected with VPLA2 followed by administration of ascorbic acid and α-tocopherol respectively. In all the groups, hepatic and renal levels of reactive oxygen species (ROS), lipid peroxidation (MDA) and activities of antioxidant enzymes were determined. The results showed that, the BRS-P19 has molecular weight of ~19kD. Its percentage in vitro inhibitory effect against VPLA2 was 91.85 ± 0.32%. For the in vivo study, the animals treated with 0.4 mg/kg b.w. of the BRS-P19 showed a significant (P<0.05) decrease in the hepatic and renal ROS and MDA levels when compared with the VPLA2 untreated group. But, the activities of the antioxidant enzymes in all the treated groups were significantly (P<0.05) increased by the BRS-P19 at 0.4 mg/kg b.w. when compared to the VPLA2 untreated group. Based on these findings, it has been established that, BRS-P19 has antisnake venom effect through inhibition of VPLA2 and antioxidant activity as the possible mechanisms of action.



Antioxidants ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 98 ◽  
Author(s):  
Sztretye ◽  
Singlár ◽  
Szabó ◽  
Angyal ◽  
Balogh ◽  
...  

Background: Astaxanthin (AX) a marine carotenoid is a powerful natural antioxidant which protects against oxidative stress and improves muscle performance. Retinol and its derivatives were described to affect lipid and energy metabolism. Up to date, the effects of AX and retinol on excitation-contraction coupling (ECC) in skeletal muscle are poorly described. Methods: 18 C57Bl6 mice were divided into two groups: Control and AX supplemented in rodent chow for 4 weeks (AstaReal A1010). In vivo and in vitro force and intracellular calcium homeostasis was studied. In some experiments acute treatment with retinol was employed. Results: The voltage activation of calcium transients (V50) were investigated in single flexor digitorum brevis isolated fibers under patch clamp and no significant changes were found following AX supplementation. Retinol shifted V50 towards more positive values and decreased the peak F/F0 of the calcium transients. The amplitude of tetani in the extensor digitorum longus was significantly higher in AX than in control group. Lastly, the mitochondrial calcium uptake was found to be less prominent in AX. Conclusion: AX supplementation increases in vitro tetanic force without affecting ECC and exerts a protecting effect on the mitochondria. Retinol treatment has an inhibitory effect on ECC in skeletal muscle.



Sign in / Sign up

Export Citation Format

Share Document