scholarly journals α-Glucosidase Inhibitory, Anti-Oxidant, and Anti-Hyperglycemic Effects of Euphorbia nivulia–Ham. in STZ-Induced Diabetic Rats

Dose-Response ◽  
2020 ◽  
Vol 18 (3) ◽  
pp. 155932582093942
Author(s):  
Muhammad Younus ◽  
Muhammad Mohtasheem ul Hasan ◽  
Khalil Ahmad ◽  
Ali Sharif ◽  
Hafiz Muhammad Asif ◽  
...  

In this study, we aimed to investigate the antidiabetic effects of Euphorbia nivulia (En), native to Cholistan Desert area of Bahawalpur, Pakistan. First, we performed high-performance liquid chromatography analysis and found that this plant contains ferulic acid, gallic acid, quercetin, benzoic acid, polyphenols, and flavonoids. Then, we performed in vitro and in vivo studies to assess its effects on diabetic Wistar rat model. The experiments were performed and compared with control drug glibenclamide. The 70% hydroalcoholic extract of En exhibited 97.8% in vitro α-glucosidase inhibitory effect at a dose of 1.0 mg/mL. We orally administered the extract of En and control drug to the streptozotocin (STZ)-induced diabetic rats and analyzed its antidiabetic effects. We found that the extract of En with a dose of 500 mg/kg/body weight exhibited significant effect to reduce blood glucose in STZ-induced rats as compared with the control group ( P < .001). Our histological data also showed that the extract significantly improved the histopathology of pancreas. Collectively, both in vitro and in vivo studies revealed that En possesses α-glucosidase inhibitory, antioxidant, and anti-hyperglycemic effect in STZ-induced diabetic rats.

2021 ◽  
Author(s):  
Xiaofeng Zhang ◽  
Yujun Tang ◽  
Xiaoxian Guan ◽  
Xin Lu ◽  
Jiao Li ◽  
...  

Amomum tsao-ko Crevost et Lemarie (A. tsao-ko) is a well-known dietary spice and traditional Chinese medicine. This study aimed to identify the flavonoids in A. tsao-ko and evaluate its antioxidant...


Author(s):  
Supriya Agnihotri ◽  
Gurvirender Singh ◽  
Santosh Kumar Verma

Looking at the increasing prevalence and inadequate treatments for diabetes mellitus, this study was carried to trace out hypoglycemic potentials of Typha elephantina leaves using in vitro and in vivo studies. α -amylase and α-glucosidase in vitro enzyme inhibition assay were incorporated to determine percent inhibition of Typha elephantina extracts. Typha elephantina methanol extract (TEME) at 125µg/ml in both α-amylase and α-glucosidase exhibited 57.48±1.42 and 53.64±0.92 percent inhibition in contrast to 66.7±0.94 and 70.31±1.25 of standard Acarbose, respectively. However, results obtained in Typha elephantina petroleum ether and chloroform extracts were insignificant. Further TEME antidiabetic properties were investigated by in vivo study, using Streptozotocin induced diabetic rats. Selected 250mg/kg and 500mg/kg doses of TEME were administered orally, which significantly (𝑃 < 0.001) reduces blood glucose of treated animals in contrast to diabetic control. 500mg/kg dose of TEME reduces blood glucose more efficiently. A significant linear rise of body weight and HDL were observed, while there was also remarkable reduction in cholesterol, TG, LDL, VLDL. Reduction in Liver function SGOT, SGPT along with creatinine and urea levels were observed in contrast to diabetic control group. In addition, antioxidant study of Typha elephantina extracts reflected significant results in comparison to that of ascorbic acid in DPPH and H2O2 assay. The whole study signified that Typha elephantina has hypoglycemic potentials.


2021 ◽  
Author(s):  
Ameer Alrubaye ◽  
Majid Motovali-Bashi ◽  
Mehran Miroliaei

Abstract Non-enzymatic glycation of DNA and the associated effects are among pathogenic factors in diabetes mellitus. Natural polyphenols have anti-diabetic activity. Herein, the protective role of one of the phytochemicals, rosmarinic acid (RA), was evaluated in glycation (with fructose) of human DNA and expression of Akt genes in the hippocampus of diabetic rats. In-vitro studies using fluorescence, agarose gel electrophoresis, fluorescence microscopy, and thermal denaturation analyses revealed that glycation causes DNA damage and that RA inhibits it. In-vivo studies were performed by induction of diabetes in rats using streptozotocin. The diabetic rats were given RA daily through gavage feeding. The expression of Akt genes (inhibitors of apoptosis) in the hippocampus was evaluated using RT-qPCR. In diabetic rats, Akt1 and Akt3 were significantly down-regulated compared to the control group. Treating the diabetic rats with RA returned the expression of Akt1 and Akt3 relatively to the normal condition. Past studies have shown that diabetes induces apoptosis in the hippocampal neurons. Given that glycation changes the genes expression and causes cell death, apoptosis of the hippocampal neurons can be due to the glycation of DNA. The results also suggest that RA has reliable potency against the gross modification of DNA under hyperglycemic conditions.


Author(s):  
Ojochenemi E. Yakubu ◽  
Eleojo B. Ojogbane ◽  
Francis O. Atanu ◽  
Chukwuka S. M. Udeh ◽  
Morayo E. Ale ◽  
...  

<p class="abstract"><strong>Background:</strong> Induction of toxicity using nitrosamines provides a reliable animal model for the study of oxidative damage to lipids, cellular membranes, proteins and DNA. In the present report, the effects of partially purified fractions of <em>Senna occidentalis</em> leaves on diethylnitrosamine intoxicated rats were studied.</p><p class="abstract"><strong>Methods:</strong> Fractions obtained from eluting the column with solvents of increasing polarity, n-hexane, chloroform, ethyl acetate, ethanol, methanol and distilled water were subjected to <em>in vitro</em> for their ability to scavenge 1, 1-dipheny l, 2-pycryl hydrazyl (DPPH) radical. Fraction 6a eluted with ethyl acetate:ethanol (50:50) possessed the highest antioxidant activity, this fraction was therefore selected for in vivo studies. Twenty rats, each weighing between 150 to 250 g were randomly allocated into four groups of five rats each. Hepatotoxicity was induced using a single intraperitoneal injection of diethylnitrosamine (DEN) at the 200 mg/kg body weight. Treatment was carried out for 3 weeks by oral gavage as follows: group A, normal control, group B, DEN control, group C, DEN+fraction (10 mg/kg), group D, DEN+silymarin (5 mg/kg).</p><p class="abstract"><strong>Results:</strong> The results showed that DEN toxicity significantly (p&lt;0.05) increased alanine transaminase (ALT) and aspartate transaminase (AST) activities and increased the level of thiobarbituric acid reactive substance (TBARS) in the liver. In contrast, the levels of bilirubin, total protein (TP) and albumin (ALB) decreased. However, treatment of rats with the extract significantly (p&lt;0.05) reduced the concentrations of TBARS, ALT, AST and bilirubin, but increased the concentration of TP and ALB.</p><p class="abstract"><strong>Conclusions:</strong> These results show hepatoprotective potentials of the fraction. Furthermore, GC-MS fingerprinting of fraction 6a revealed the presence of compounds with anticancer, antioxidant and anti-inflammatory properties confirming its high chance for exploration as a medicinal agent.</p>


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ameer Alrubaye ◽  
Majid Motovali-Bashi ◽  
Mehran Miroliaei

AbstractNon-enzymatic glycation of DNA and the associated effects are among pathogenic factors in diabetes mellitus. Natural polyphenols have anti-diabetic activity. Herein, the protective role of one of the phytochemicals, rosmarinic acid (RA), was evaluated in glycation (with fructose) of human DNA and expression of Akt genes in the hippocampus of diabetic rats. In-vitro studies using fluorescence, agarose gel electrophoresis, fluorescence microscopy, and thermal denaturation analyses revealed that glycation causes DNA damage and that RA inhibits it. In-vivo studies were performed by induction of diabetes in rats using streptozotocin. The diabetic rats were given RA daily through gavage feeding. The expression of Akt genes (inhibitors of apoptosis) in the hippocampus was evaluated using RT-qPCR. In diabetic rats, Akt1 and Akt3 were significantly down-regulated compared to the control group. Treating the diabetic rats with RA returned the expression of Akt1 and Akt3 relatively to the normal condition. Past studies have shown that diabetes induces apoptosis in the hippocampal neurons. Given that glycation changes the genes expression and causes cell death, apoptosis of the hippocampal neurons can be due to the glycation of DNA. The results also suggest that RA has reliable potency against the gross modification of DNA under hyperglycemic conditions.


2018 ◽  
Vol 15 (6) ◽  
pp. 531-543 ◽  
Author(s):  
Dominik Szwajgier ◽  
Ewa Baranowska-Wojcik ◽  
Kamila Borowiec

Numerous authors have provided evidence regarding the beneficial effects of phenolic acids and their derivatives against Alzheimer's disease (AD). In this review, the role of phenolic acids as inhibitors of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) is discussed, including the structure-activity relationship. In addition, the inhibitory effect of phenolic acids on the formation of amyloid β-peptide (Aβ) fibrils is presented. We also cover the in vitro, ex vivo, and in vivo studies concerning the prevention and treatment of the cognitive enhancement.


Molecules ◽  
2021 ◽  
Vol 26 (15) ◽  
pp. 4634
Author(s):  
Md. Shaekh Forid ◽  
Md. Atiar Rahman ◽  
Mohd Fadhlizil Fasihi Mohd Aluwi ◽  
Md. Nazim Uddin ◽  
Tapashi Ghosh Roy ◽  
...  

This research investigated a UPLC-QTOF/ESI-MS-based phytochemical profiling of Combretum indicum leaf extract (CILEx), and explored its in vitro antioxidant and in vivo antidiabetic effects in a Long–Evans rat model. After a one-week intervention, the animals’ blood glucose, lipid profile, and pancreatic architectures were evaluated. UPLC-QTOF/ESI-MS fragmentation of CILEx and its eight docking-guided compounds were further dissected to evaluate their roles using bioinformatics-based network pharmacological tools. Results showed a very promising antioxidative effect of CILEx. Both doses of CILEx were found to significantly (p < 0.05) reduce blood glucose, low-density lipoprotein (LDL), and total cholesterol (TC), and increase high-density lipoprotein (HDL). Pancreatic tissue architectures were much improved compared to the diabetic control group. A computational approach revealed that schizonepetoside E, melianol, leucodelphinidin, and arbutin were highly suitable for further therapeutic assessment. Arbutin, in a Gene Ontology and PPI network study, evolved as the most prospective constituent for 203 target proteins of 48 KEGG pathways regulating immune modulation and insulin secretion to control diabetes. The fragmentation mechanisms of the compounds are consistent with the obtained effects for CILEx. Results show that the natural compounds from CILEx could exert potential antidiabetic effects through in vivo and computational study.


Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 3977
Author(s):  
Shaoyun Wang ◽  
Xiaozhu Sun ◽  
Shuo An ◽  
Fang Sang ◽  
Yunli Zhao ◽  
...  

Polygoni Multiflori Radix Praeparata (PMRP), as the processed product of tuberous roots of Polygonum multiflorum Thunb., is one of the most famous traditional Chinese medicines, with a long history. However, in recent years, liver adverse reactions linked to PMRP have been frequently reported. Our work attempted to investigate the chemical constituents of PMRP for clinical research and safe medication. In this study, an effective and rapid method was established to separate and characterize the constituents in PMRP by combining ultra-high performance liquid chromatography with hybrid quadrupole-orbitrap mass spectrometry (UHPLC-Q-Exactive Orbitrap-MS). Based on the accurate mass measurements for molecular and characteristic fragment ions, a total of 103 compounds, including 24 anthraquinones, 21 stilbenes, 15 phenolic acids, 14 flavones, and 29 other compounds were identified or tentatively characterized. Forty-eight compounds were tentatively characterized from PMRP for the first time, and their fragmentation behaviors were summarized. There were 101 components in PMRP ethanol extract (PMRPE) and 91 components in PMRP water extract (PMRPW). Simultaneously, the peak areas of several potential xenobiotic components were compared in the detection, which showed that PMRPE has a higher content of anthraquinones and stilbenes. The obtained results can be used in pharmacological and toxicological research and provided useful information for further in vitro and in vivo studies.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 386
Author(s):  
Tung-Hu Tsai ◽  
Yu-Jen Chen ◽  
Li-Ying Wang ◽  
Chen-Hsi Hsieh

This study was performed to evaluate the interaction between conventional or high-dose radiotherapy (RT) and the pharmacokinetics (PK) of regorafenib in concurrent or sequential regimens for the treatment of hepatocellular carcinoma. Concurrent and sequential in vitro and in vivo studies of irradiation and regorafenib were designed. The interactions of RT and regorafenib in vitro were examined in the human hepatoma Huh-7, HA22T and Hep G2 cell lines. The RT–PK phenomenon and biodistribution of regorafenib under RT were confirmed in a free-moving rat model. Regorafenib inhibited the viability of Huh-7 cells in a dose-dependent manner. Apoptosis in Huh-7 cells was enhanced by RT followed by regorafenib treatment. In the concurrent regimen, RT decreased the area under the concentration versus time curve (AUC)regorafenib by 74% (p = 0.001) in the RT2 Gy × 3 fraction (f’x) group and by 69% (p = 0.001) in the RT9 Gy × 3 f’x group. The AUCregorafenib was increased by 182.8% (p = 0.011) in the sequential RT2Gy × 1 f’x group and by 213.2% (p = 0.016) in the sequential RT9Gy × 1 f’x group. Both concurrent regimens, RT2Gy × 3 f’x and RT9Gy × 3 f’x, clearly decreased the biodistribution of regorafenib in the heart, liver, lung, spleen and kidneys, compared to the control (regorafenib × 3 d) group. The concurrent regimens, both RT2Gy × 3 f’x and RT9Gy × 3 f’x, significantly decreased the biodistribution of regorafenib, compared with the control group. The PK of regorafenib can be modulated both by off-target irradiation and stereotactic body radiation therapy (SBRT).


2021 ◽  
Vol 95 ◽  
Author(s):  
E.S. El-Wakil ◽  
H.F. Abdelmaksoud ◽  
T.S. AbouShousha ◽  
M.M.I. Ghallab

Abstract Our work aimed to evaluate the possible effect of Annona muricata (Graviola) leaf extract on Trichinella spiralis in in vitro and in vivo studies. Trichinella spiralis worms were isolated from infected mice and transferred to three culture media – group I (with no drugs), group II (contained Graviola) and group III (contained albendazole) – then they were examined using the electron microscope. In the in vivo study, mice were divided into five groups: GI (infected untreated), GII (prophylactically treated with Graviola for seven days before infection), GIII (infected and treated with Graviola), GIV (infected and treated with albendazole) and GV (infected and treated with a combination of Graviola plus albendazole in half doses). Drug effects were assessed by adults and larvae load beside the histopathological small intestinal and muscular changes. A significant reduction of adult and larval counts occurred in treated groups in comparison to the control group. Histopathologically, marked improvement in the small intestinal and muscular changes was observed in treated groups. Also, massive destruction of the cultured adults’ cuticle was detected in both drugs. This study revealed that Graviola leaves have potential activity against trichinellosis, especially in combination with albendazole, and could serve as an adjuvant to anti-trichinellosis drug therapy.


Sign in / Sign up

Export Citation Format

Share Document