scholarly journals The Biological fertilizer research results of Seabuckthorn (Hippophae rhamnoides)

2021 ◽  
Vol 31 (3) ◽  
pp. 116-119
Author(s):  
Galt Lantuu ◽  
Ninj Badam ◽  
Ankhtuya Mijidorj

The seabuckthorn subspecies mongolica used in this research. Seabuckthorn (Нippophae ramnoides L.) root nodule research focused on symbiotic nitrogen fixation bacteria that could aid in the cultivation of this species. Seabuckthorn root nodules have Frankia actinorhizal microorganisms.Under nitrogen-free conditions, seabuckthorn seedlings inoculated with a homogenate of root nodules that grew normally and the fresh weight of root nodules had positively correlated with plant growth. In the field, nitrogenase activity in root nodules was high in the period from June to September,when air temperatures were high and photosynthesis was active. Also we investigated the effect of nitrate on nitrogenase activity in seabuckthorn root nodules. Root nodules with many lobes were found in mature seabuckthorn trees grown in the field. Чацаргана (Hippophae Rhamnoides) тарьсан талбайд биологийн бордоо хэрэглэсэн дүнгээс Чацарганы (Hippophae rhamnoides) үндэсний булцуунаас азот шингээгч бактерийг ялган өсгөвөрлөх, шингээх идэвхи нь өөрчлөгдөж буй эсэхийг лабораторийн нөхцөлд турших, биобордоо бэлтгэж чацарганы тарьц суулгацыг бордож туршин үр дүнг хяналтын ургамалтай харьцуулж гаргахад  VI,VII,VIII сард өссөн үзүүлэлттэй буюу 3,74-7,1 х 106 бактерийн  эсээр нэмэгдсэн байна.  Түлхүүр үг:  Булцуу, биологийн бордоо, эрдэс бордоо,бичил биетэн

2021 ◽  
Vol 3 ◽  
Author(s):  
Mariana Sotelo ◽  
Ana Claudia Ureta ◽  
Socorro Muñoz ◽  
Juan Sanjuán ◽  
Jorge Monza ◽  
...  

Biological nitrogen fixation by the Rhizobium-legume symbiosis allows the conversion of atmospheric nitrogen into ammonia within root nodules mediated by the nitrogenase enzyme. Nitrogenase activity results in the evolution of hydrogen as a result of a side reaction intrinsic to the activity of this enzyme. Some rhizobia, and also other nitrogen fixers, induce a NiFe uptake hydrogenase (Hup) to recycle hydrogen produced by nitrogenase, thus improving the efficiency of the nitrogen fixation process. In this work we report the generation and symbiotic behavior of hydrogenase-positive Rhizobium leguminosarum and Mesorhizobium loti strains effective in vetch (Vicia sativa) and birsfoot trefoil (Lotus corniculatus) forage crops, respectively. The ability of hydrogen recycling was transferred to these strains through the incorporation of hup minitransposon TnHB100, thus leading to full recycling of hydrogen in nodules. Inoculation of Vicia and Lotus plants with these engineered strains led to significant increases in the levels of nitrogen incorporated into the host legumes. The level of improvement of symbiotic performance was dependent on the recipient strain and also on the legume host. These results indicate that hydrogen recycling has the potential to improve symbiotic nitrogen fixation in forage plants.


2018 ◽  
Author(s):  
Patricia Gil-Díez ◽  
Manuel Tejada-Jiménez ◽  
Javier León-Mediavilla ◽  
Jiangqi Wen ◽  
Kirankumar S. Mysore ◽  
...  

ABSTRACTSymbiotic nitrogen fixation in legume root nodules requires a steady supply of molybdenum for synthesis of the iron-molybdenum cofactor of nitrogenase. This nutrient has to be provided by the host plant from the soil, crossing several symplastically disconnected compartments through molybdate transporters, including members of the MOT1 family. MtMOT1.2 is aMedicago truncatulaMOT1 family member located in the endodermal cells in roots and nodules. Immunolocalization of a tagged MtMOT1.2 indicates that it is associated to the plasma membrane and to intracellular membrane systems, where it would be transporting molybdate towards the cytosol, as indicated in yeast transport assays. A loss-of-functionmot1.2-1mutant showed reduced growth compared to wild-type plants when nitrogen fixation was required, but not when nitrogen was provided as nitrate. While no effect on molybdenum-dependent nitrate reductase activity was observed, nitrogenase activity was severely affected, explaining the observed difference of growth depending on nitrogen source. This phenotype was the result of molybdate not reaching the nitrogen-fixing nodules, since genetic complementation with a wild-typeMtMOT1.2gene or molybdate-fortification of the nutrient solution, both restored wild-type levels of growth and nitrogenase activity. These results support a model in which MtMOT1.2 would mediate molybdate delivery by the vasculature into the nodules.


2019 ◽  
Author(s):  
Viviana Escudero ◽  
Isidro Abreu ◽  
Eric del Sastre ◽  
Manuel Tejada-Jiménez ◽  
Camile Larue ◽  
...  

SUMMARYSymbiotic nitrogen fixation carried out by the interaction between legumes and diazotrophic bacteria known as rhizobia requires of relatively large levels of transition metals. These elements act as cofactors of many key enzymes involved in this process. Metallic micronutrients are obtained from soil by the roots and directed to sink organs by the vasculature, in a process participated by a number of metal transporters and small organic molecules that mediate metal delivery in the plant fluids. Among the later, nicotianamine is one of the most important. Synthesized by nicotianamine synthases (NAS), this non-proteinogenic amino acid forms metal complexes participating in intracellular metal homeostasis and long-distance metal trafficking. Here we characterized the NAS2 gene from model legume Medicago truncatula. MtNAS2 is located in the root vasculature and in all nodule tissues in the infection and fixation zones. Symbiotic nitrogen fixation requires of MtNAS2 function, as indicated by the loss of nitrogenase activity in the insertional mutant nas2-1, a phenotype reverted by reintroduction of a wild-type copy of MtNAS2. This would be the result of the altered iron distribution in nas2-1 nodules, as indicated by X-ray fluorescence studies. Moreover, iron speciation is also affected in these nodules. These data suggest a role of nicotianamine in iron delivery for symbiotic nitrogen fixation.Significance StatementNicotianamine synthesis mediated by MtNAS2 is important for iron allocation for symbiotic nitrogen fixation by rhizobia in Medicago truncatula root nodules.


2020 ◽  
Vol 117 (3) ◽  
pp. 1806-1815 ◽  
Author(s):  
Yoshikazu Shimoda ◽  
Yuki Nishigaya ◽  
Hiroko Yamaya-Ito ◽  
Noritoshi Inagaki ◽  
Yosuke Umehara ◽  
...  

Leguminous plants establish endosymbiotic associations with rhizobia and form root nodules in which the rhizobia fix atmospheric nitrogen. The host plant and intracellular rhizobia strictly control this symbiotic nitrogen fixation. We recently reported a Lotus japonicus Fix− mutant, apn1 (aspartic peptidase nodule-induced 1), that impairs symbiotic nitrogen fixation. APN1 encodes a nodule-specific aspartic peptidase involved in the Fix− phenotype in a rhizobial strain-specific manner. This host-strain specificity implies that some molecular interactions between host plant APN1 and rhizobial factors are required, although the biological function of APN1 in nodules and the mechanisms governing the interactions are unknown. To clarify how rhizobial factors are involved in strain-specific nitrogen fixation, we explored transposon mutants of Mesorhizobium loti strain TONO, which normally form Fix− nodules on apn1 roots, and identified TONO mutants that formed Fix+ nodules on apn1. The identified causal gene encodes an autotransporter, part of a protein secretion system of Gram-negative bacteria. Expression of the autotransporter gene in M. loti strain MAFF3030399, which normally forms Fix+ nodules on apn1 roots, resulted in Fix− nodules. The autotransporter of TONO functions to secrete a part of its own protein (a passenger domain) into extracellular spaces, and the recombinant APN1 protein cleaved the passenger protein in vitro. The M. loti autotransporter showed the activity to induce the genes involved in nodule senescence in a dose-dependent manner. Therefore, we conclude that the nodule-specific aspartic peptidase, APN1, suppresses negative effects of the rhizobial autotransporter in order to maintain effective symbiotic nitrogen fixation in root nodules.


1979 ◽  
Vol 25 (3) ◽  
pp. 298-301 ◽  
Author(s):  
Ilona Barabás ◽  
Tibor Sik

In two out of three pleiotropic mutants of Rhizobium meliloti, defective in nitrate reductase induced by amino acid utilization in vegetative bacteria and in symbiotic nitrogen fixation, nitrogenase activity could be restored completely by purines and partially by the amino acids L-glutamate, L-aspartate, L-glutamine, and L-asparagine. The compounds restoring effectiveness in nitrogen fixation did not restore nitrate reductase activity in vegetative bacteria. The restoration of effectiveness supports our earlier conclusion that the mutation is not in the structural gene for a suggested common subunit of nitrogenase and nitrate reductase.


2015 ◽  
Vol 112 (49) ◽  
pp. 15232-15237 ◽  
Author(s):  
Beatrix Horváth ◽  
Ágota Domonkos ◽  
Attila Kereszt ◽  
Attila Szűcs ◽  
Edit Ábrahám ◽  
...  

Host compatible rhizobia induce the formation of legume root nodules, symbiotic organs within which intracellular bacteria are present in plant-derived membrane compartments termed symbiosomes. In Medicago truncatula nodules, the Sinorhizobium microsymbionts undergo an irreversible differentiation process leading to the development of elongated polyploid noncultivable nitrogen fixing bacteroids that convert atmospheric dinitrogen into ammonia. This terminal differentiation is directed by the host plant and involves hundreds of nodule specific cysteine-rich peptides (NCRs). Except for certain in vitro activities of cationic peptides, the functional roles of individual NCR peptides in planta are not known. In this study, we demonstrate that the inability of M. truncatula dnf7 mutants to fix nitrogen is due to inactivation of a single NCR peptide, NCR169. In the absence of NCR169, bacterial differentiation was impaired and was associated with early senescence of the symbiotic cells. Introduction of the NCR169 gene into the dnf7-2/NCR169 deletion mutant restored symbiotic nitrogen fixation. Replacement of any of the cysteine residues in the NCR169 peptide with serine rendered it incapable of complementation, demonstrating an absolute requirement for all cysteines in planta. NCR169 was induced in the cell layers in which bacteroid elongation was most pronounced, and high expression persisted throughout the nitrogen-fixing nodule zone. Our results provide evidence for an essential role of NCR169 in the differentiation and persistence of nitrogen fixing bacteroids in M. truncatula.


1969 ◽  
Vol 15 (7) ◽  
pp. 671-675 ◽  
Author(s):  
G. S. Hendry ◽  
D. C. Jordan

Under clearly defined conditions one-step acquisition of viomycin resistance by a normally effective strain of Rhizobium meliloti resulted in one-step acquisition of ineffectiveness in nitrogen fixation, which probably occurred with a one-gene change in the R. meliloti genome. Two-step mutants retained their ability to produce root nodules but such nodules also were ineffective. Increased sensitivity of the viomycin-resistant mutants to glycine and D-alanine was not noted. Bacteroids were not seen in nodules formed by the viomycin-resistant mutants on their homologous host plant. Nitrogenase activity was not detected, by acetylene reduction, in detached ineffective nodules, whereas effective nodules formed 10.6 μmoles of ethylene per hour per gram of nodules. Growth of the effective parent strain in a low concentration of viomycin resulted in elongation and swelling of the cells so that they appeared as artificially produced bacteroids. Viomycin-resistant mutants did not undergo this transformation. Antigens could be readily extracted by hot- and cold-saline extraction of wet packed cells of both resistant and sensitive cultures but antigenic differences, which may have indicated cell wall differences, were not noted.


2020 ◽  
Vol 52 (5) ◽  
pp. 422-433
Author(s):  
V.G. Kuryata ◽  

The work and the main scientific results of the Vinnytsia branch of the USPP from the moment of its formation to the present time are analyzed. The main direction of research is exogenous regulation of plants source-sink relations in the systems «photosynthesis—growth», «depot of assimilates—growth» in the heterotrophic phase of plant development, and «macrosymbiont—microsymbiont» in symbiotic nitrogen fixation systems. Gibberellin and antigibberellin preparations (retardants) were used to create different tension of source-sink relations. It was found that under the influence of retardants, the decrease in the linear growth rate was accompanied by an increase in the cytokinins content with a decrease in the indoleacetic acid content in stems and leaves tissues of a wide range of plants. The free gibberellins activity was lower compared to control. At the same time, the content of these phytohormones antagonist, abscisic acid, increased. The retardants increased the stem branching, leaves number, weight and leaf surface area, optimized the leaves mesostructural organization, resulting in an increase in the photosynthetic net productivity. These changes lead to increased crop productivity. Under the conditions of artificial combination of external (light/dark) and hormonal factors (gibberellic acid and retardants) during seed germination, changes in the functioning of the source-sink system in the heterotrophic stage of plant development from seeds with different reserve substances types were studied. Gibberellin stimulated the starch breakdown in both light and dark, but under conditions of germination in the dark, the rate of reserve seed starch use was higher. Gibberellin also stimulated the seed reserve proteins hydrolysis, but the process began after intensive starch hydrolysis. Peculiarities of regulation of source-sink relations in the system «macro—microsymbiont» during the processes of symbiotic nitrogen fixation under the action of antigibberellin preparations — retardants are revealed. It was found that the typical reaction of soybean plants to the paclobutrazol application was a decrease in the free form gibberellins activity and an increase in the abscisic acid content, which led to changes in morphogenesis. Under the retardants action, the processes of formation of the symbiotic complex «soybean—Bradyrhizobium japonicum» intensify, nitrogenase activity increased, crop yield rised.


2020 ◽  
Author(s):  
Rosario Castro-Rodríguez ◽  
María Reguera ◽  
Viviana Escudero ◽  
Patricia Gil-Díez ◽  
Julia Quintana ◽  
...  

ABSTRACTYellow Stripe-Like (YSL) proteins are a family of plant transporters typically involved in transition metal homeostasis. The substrate of three of the four YSL clades (clades I, II, and IV) are metal complexes with non-proteinogenic amino acid nicotianamine or its derivatives. No such transport capabilities have been shown for any member of the remaining clade (clade III), which is able to translocate short peptides across the membranes instead. The connection between clade III YSL members and metal homeostasis might have been masked by the functional redundancy characteristic of this family. This might have been circumvented in legumes through neofunctionalization of YSLs to ensure a steady supply of transition metals for symbiotic nitrogen fixation in root nodules. To test this possibility, Medicago truncatula clade III transporter MtYSL7 has been studied both when the plant was fertilized with ammonium nitrate or when nitrogen had to be provided by endosymbiotic rhizobia within the root nodules. MtYSL7 is a plasma membrane protein expressed in the vasculature and in the nodule cortex. This protein is able to transport short peptides into the cytosol, although none with known metal homeostasis roles. Reducing MtYSL7 expression levels resulted in diminished nitrogen fixation rates. In addition, nodules of mutant lines lacking YSL7 accumulated more copper and iron, the later the likely result of increased expression in roots of iron uptake and delivery genes. The available data is indicative of a role of MtYSL7, and likely other clade III YSLs, in transition metal homeostasis.ONE SENTENCE SUMMARYMedicago truncatula YSL7 is a peptide transporter required for symbiotic nitrogen fixation in legume nodules, likely controlling transition metal allocation to these organs.


Sign in / Sign up

Export Citation Format

Share Document