scholarly journals Gametophyte and sporophyte of tree ferns in vitro culture

2011 ◽  
Vol 76 (3) ◽  
pp. 193-199 ◽  
Author(s):  
Katarzyna Goller ◽  
Jan J. Rybczyński

Experiments had been carried out on gametophytes and very young fronds of sporophytes with application of Murashige and Skoog (1962) medium. The paper described the results of 15 years in vitro experiments on 16 species of tree ferns belonging to various genera: <em>Blechnum</em>, <em>Cibotium</em>, <em>Cyathea</em> and <em>Dicksonia</em>. Genus <em>Cyathea</em> was represented by: <em>C. australis</em> (R.Br.) Domin., <em>C. capensis</em> (L.f.) Sm., <em>C. cooperi</em> (F.Muell.) Domin, <em>C. brownii</em> Domin, <em>C. dealbata</em> (G.Forest) Sw., <em>C. dregei</em> Kunze, <em>C. leichhardtiana</em> (F.Muell.) Copel., <em>C. robertsiana</em> (F.Muell.) Domin., <em>C. schanschin</em> Mart., <em>C. smithii</em> Hook.f. and <em>Cyathea</em> sp. In case of genus <em>Dicksonia</em> only two species were introduced into our experiments: <em>D. fibrosa</em> Colenso and <em>D. sellowiana</em> Hook.. Taxa <em>Blechnum</em> was presented by <em>B. brasiliense</em> Desv. and <em>Cibotium</em> by <em>C. glaucum</em> (Sm.) Hook. and Arn. and <em>C. schiedei</em> Schltdl. and Cham.. The studied species presented various responses on culture conditions depending on the level of stage of development. Time required for spores germination differed between species and took from only a few to 16 weeks. Prothalium formations showed various types of growth presented by marginal meristems. For all investigated species long term gametophyte in vitro cultures was established. Mature gametophyte possessed functional antheridia and archegonia. Spontaneous fertilization helped to establish the culture of young sporophytes. For all species the ex vitro culture in greenhouse collection was established. Manipulation of sucrose content in the medium stimulated the multiplication of gametophytes, but its lack induced formation of gemmae. Apospory was observed when culture of very young fronds was extended for 6 months and new generation of gametophytes was developed. Finally, sporophytes of 12 species were obtained and they have been growing in our greenhouse.

2019 ◽  
pp. 57-67
Author(s):  
T.M. Tabatskaya ◽  
N.I. Vnukova

A technique for the long-term (up to 27 years) in vitro storage of valuable birch genotypes under normal (25 °C, 2.0 klx, 16-h day and 8-h night) and low temperature (4 °C, 0.5 klx, 6-h day and 18-h night) growing conditions on hormone-free media has been described. The study explored for the first time the influence of different strategies to store the clones of Betula pubescens and B. pendula var. сarelica (6 genotypes) on the regenerative capacity of collection samples, adaptive potential of regenerated plants and plant production by the in vitro and ex vitro techniques. It was established that both storage strategies provided a persistently high survival rate (82-100%) and regenerative capacity of in vitro shoots (the multiplication coefficient of 4.2-6.3 and rhizogenic activity of 90-100%). The clones retained their characteristics of height growth under the in vitro and ex vitro conditions, and demonstrated intraclonal homogeneity and lack of signs of somaclonal variability. The plants showed substantial interspecific differences at the stage of multiplication and transfer to the greenhouse. The highest percentage of acclimated plants (75-98% depending on the clone genotype) was obtained after planting of micro plants straight in the greenhouse, which simplified the technology and made plant production less costly. long-term in vitro storage, birch, species, genotype, micropropagation, ex vitro adaptation, plant material


Blood ◽  
2020 ◽  
Vol 136 (22) ◽  
pp. 2535-2547 ◽  
Author(s):  
W. Grey ◽  
R. Chauhan ◽  
M. Piganeau ◽  
H. Huerga Encabo ◽  
M. Garcia-Albornoz ◽  
...  

Abstract Expansion of human hematopoietic stem cells (HSCs) is a rapidly advancing field showing great promise for clinical applications. Recent evidence has implicated the nervous system and glial family ligands (GFLs) as potential drivers of hematopoietic survival and self-renewal in the bone marrow niche; how to apply this process to HSC maintenance and expansion has yet to be explored. We show a role for the GFL receptor, RET, at the cell surface of HSCs in mediating sustained cellular growth, resistance to stress, and improved cell survival throughout in vitro expansion. HSCs treated with the key RET ligand/coreceptor complex, glial-derived neurotrophic factor and its coreceptor, exhibit improved progenitor function at primary transplantation and improved long-term HSC function at secondary transplantation. Finally, we show that RET drives a multifaceted intracellular signaling pathway, including key signaling intermediates protein kinase B, extracellular signal-regulated kinase 1/2, NF-κB, and p53, responsible for a wide range of cellular and genetic responses that improve cell growth and survival under culture conditions.


2015 ◽  
Vol 39 ◽  
pp. S35
Author(s):  
C. Ichim ◽  
D. Koos ◽  
T. Ichim ◽  
R. Wells
Keyword(s):  

2021 ◽  
pp. 185-190
Author(s):  
I.V. Mitrofanova ◽  
V.A. Brailko ◽  
N.P. Lesnikova-Sedoshenko ◽  
N.N. Ivanova ◽  
O.V. Mitrofanova

2000 ◽  
Vol 8 (3) ◽  
pp. 241-287 ◽  
Author(s):  
GM Jones

The transfer of a blastocyst established the first human clinical pregnancy following in vitro fertilization (IVF). Nine years later Cohen et al. reported pregnancies resulting from the transfer of cryopreserved human blastocysts. However, it was another six years before the first report of births resulting from the transfer of human blastocysts produced in vitro appeared in the medical literature. In the intervening period clinics have opted to transfer embryos at the early cleavage stage to the uterus, despite the fact that in vivo the embryo does not enter the uterus until two to three days later at the morula to blastocyst stage of development. The viability and potential for implantation of blastocysts is high, as indicated by the finding that more than 60% of in-vivo-derived blastocysts, recovered by uterine lavage following artificial insemination of fertile donors, implant and develop into viable fetuses when transferred to recipients. This is in stark contrast to the 10–20% of in-vitro-produced embryos transferred at the early cleavage stage of development that result in a live-birth. This reduction in viability following transfer of in-vitro-derived early cleavage stage embryos may have several possible explanations: (1) a failure of implantation due to poor synchronization between the embryo and the uterine endometrium; (2) a hostile environment in the uterus for early cleavage stage embryos; (3) sub-optimal in vitro culture conditions which result in a reduction in embryo viability; (4) the assumption that all oocytes retrieved in an IVF cycle have an equal ability to develop into viable embryos; and (5) the failure to identify the most viable embryo in a cohort. Certainly, improving culture conditions and laboratory techniques for developing high quality blastocysts routinely in vitro will not only address many of the above questions but will also improve the quality and viability of earlier stages of embryo development.


2012 ◽  
Vol 68 (3) ◽  
pp. 533-538 ◽  
Author(s):  
Wellington Ronildo Clarindo ◽  
Carlos Roberto Carvalho ◽  
Maria Andréia Corrêa Mendonça

Blood ◽  
1996 ◽  
Vol 88 (11) ◽  
pp. 4149-4158 ◽  
Author(s):  
M Trevisan ◽  
XQ Yan ◽  
NN Iscove

Abstract This investigation was directed at separating long-term reconstituting (LTR) stem cells in normal murine marrow from hematopoietic precursors detectable in short-term assays in vitro and in vivo, and then at determining whether purified LTR cells could themselves form colonies in culture. To do so, it was first necessary to identify culture conditions that would induce their growth while preserving their long- term reconstituting capacity. Marrow was cultured with various cytokines in liquid suspension for 4 days, after which the surviving LTR activity was quantitated in a competitive in vivo assay. Activity was preserved near input levels with combined murine c-kit ligand (KL), interleukin-1 (IL-1), IL-6, and IL-11. When the cultures also included tritiated or unlabeled thymidine, LTR potential was eliminated, indicating that essentially all LTR cells were induced into cell cycle with these cytokines. To purify them, marrow was sorted on the basis of Ly6A expression and Rhodamine 123 retention. The Ly6AhiRh123ls fraction contained 85% of total recovered LTR activity but only 1% of the recovered cells measured by multilineage colony formation in spleens or in vitro. This fraction was cultured in methyl cellulose with KL, IL-1, IL-6, and IL-11 for 4 to 6 days, after which colonies were isolated and injected into mice. High levels of permanent reconstitution were achievable in sublethally irradiated W41/W41 mice after the injection of a single reconstituting unit, and limiting dilution analysis estimated the frequency of multilineage LTR at 1 in 11,200 unpurified adult marrow cells. In either lethally irradiated normal or sublethally irradiated W41/W41 mice, 1-year lymphomyeloid reconstitutions were obtained from 1 in 65 to 84 colonies of 2 to 16 dispersed cells, but not from larger colonies or those with clumped cells. The results establish that resting marrow LTR cells can be separated from almost all of the more advanced clonogenic cells that are still pluripotential, can be induced to cycle in culture by defined cytokines with preservation of their reconstituting potential, and can be manipulated and assayed efficiently at single-cell and colony levels.


Blood ◽  
1986 ◽  
Vol 68 (6) ◽  
pp. 1348-1354 ◽  
Author(s):  
A Johnson ◽  
K Dorshkind

Abstract Hemopoiesis in long-term bone marrow cultures (LTBMC) is dependent on adherent stromal cells that form an in vitro hemopoietic microenvironment. Myeloid bone marrow cultures (MBMC) are optimal for myelopoiesis, while lymphoid bone marrow cultures (LBMC) only support B lymphopoiesis. The experiments reported here have made a comparative analysis of the two cultures to determine whether the stromal cells that establish in vitro are restricted to the support of myelopoiesis or lymphopoiesis, respectively, and to examine how the different culture conditions affect stromal cell physiology. In order to facilitate this analysis, purified populations of MBMC and LBMC stroma were prepared by treating the LTBMC with the antibiotic mycophenolic acid; this results in the elimination of hemopoietic cells while retaining purified populations of functional stroma. Stromal cell cultures prepared and maintained under MBMC conditions secreted myeloid growth factors that stimulated the growth of granulocyte-macrophage colonies, while no such activity was detected from purified LBMC stromal cultures. However, this was not due to the inability of LBMC stroma to mediate this function. Transfer of LBMC stromal cultures to MBMC conditions resulted in an induction of myeloid growth factor secretion. When seeded under these conditions with stromal cell- depleted populations of hemopoietic cells, obtained by passing marrow through nylon wool columns, the LBMC stromal cells could support long- term myelopoiesis. Conversely, transfer of MBMC stroma to LBMC conditions resulted in a cessation of myeloid growth factor secretion; on seeding these cultures with nylon wool-passed marrow, B lymphopoiesis, but not myelopoiesis, initiated. These findings indicate that the stroma in the different LTBMC are not restricted in their hemopoietic support capacity but are sensitive to culture conditions in a manner that may affect the type of microenvironment formed.


Sign in / Sign up

Export Citation Format

Share Document