Perspectives of pharmacological intervention promoting liver regeneration

2018 ◽  
Vol 2 (1) ◽  
pp. 5-8 ◽  
Author(s):  
Irina G. Danilova ◽  
Hanna Kalota ◽  
Musa T. Abidov

Effective drug therapy promoting liver regeneration is a challenging goal in pharmacotherapy of liver diseases. Several plant phytochemicals recommended in traditional medicine from over hundred plants have been investigated for its use in various liver disorders. Regeneration of injured liver depend on a proliferative potential of mature hepatocytes as well as different subsets of intrahepatic and extrahepatic stem/progenitor cells. In clinical trials a stem cell therapy resulted in a limited improvement of liver functions. Animal studies have demonstrated the involvement of bone marrow-derived stem/progenitor cells in liver regeneration. For this reason, the pharmacological activation of endogenous stem cells and pharmacological control of macrophage phenotypic polarization could be an effective method of mobilizing progenitor cells to injured liver.

2019 ◽  
Vol 20 (9) ◽  
pp. 2332 ◽  
Author(s):  
Matthias Van Haele ◽  
Janne Snoeck ◽  
Tania Roskams

Regeneration of the liver has been an interesting and well-investigated topic for many decades. This etiology and time-dependent mechanism has proven to be extremely challenging to investigate, certainly in human diseases. A reason for this challenge is found in the numerous interactions of different cell components, of which some are even only temporarily present (e.g., inflammatory cells). To orchestrate regeneration of the epithelial cells, their interaction with the non-epithelial components is of utmost importance. Hepatocytes, cholangiocytes, liver progenitor cells, and peribiliary glands have proven to be compartments of regeneration. The ductular reaction is a common denominator in virtually all liver diseases; however, it is predominantly found in late-stage hepatic and biliary diseases. Ductular reaction is an intriguing example of interplay between epithelial and non-epithelial cells and encompasses bipotential liver progenitor cells which are able to compensate for the loss of the exhausted hepatocytes and cholangiocytes in biliary and hepatocytic liver diseases. In this manuscript, we focus on the etiology-specific damage that is observed in different human diseases and how the liver regulates the regenerative response in an acute and chronic setting. Furthermore, we describe the importance of morphological keynotes in different etiologies and how spatial information is of relevance for every basic and translational research of liver regeneration.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Ce Gao ◽  
Jinrong Peng

AbstractLiver is the largest internal organ that serves as the key site for various metabolic activities and maintenance of homeostasis. Liver diseases are great threats to human health. The capability of liver to regain its mass after partial hepatectomy has widely been applied in treating liver diseases either by removing the damaged part of a diseased liver in a patient or transplanting a part of healthy liver into a patient. Vast efforts have been made to study the biology of liver regeneration in different liver-damage models. Regarding the sources of hepatocytes during liver regeneration, convincing evidences have demonstrated that different liver-damage models mobilized different subtype hepatocytes in contributing to liver regeneration. Under extreme hepatocyte ablation, biliary epithelial cells can undergo dedifferentiation to liver progenitor cells (LPCs) and then LPCs differentiate to produce hepatocytes. Here we will focus on summarizing the progresses made in identifying cell types contributing to producing new hepatocytes during liver regeneration in mice and zebrafish.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Nguyen Huu Tung ◽  
Takuhiro Uto ◽  
Osamu Morinaga ◽  
Young Ho Kim ◽  
Yukihiro Shoyama

Ginseng, an ancient and famous medicinal herb in the Orient, has been used as a valuable tonic and for the treatment of various diseases including hepatic disorders. Ginseng saponins, commonly known as ginsenosides, are principal constituents and have believed to be responsible for multiple ginseng health benefits. There are more 40 ginsenosides isolated from ginseng. To date, treatment options for common liver diseases such as cirrhosis, fatty liver, and chronic hepatitis remain problematic. In this regard, ginseng extracts and individual ginsenosides have shown a wide array of beneficial role in the regulation of regular liver functions and the treatment of liver disorders of acute/chronic hepatotoxicity, hepatitis, hepatic fibrosis/cirrhosis, hepatocellular carcinoma, and so on in various pathways and mechanisms. In this paper, we first outline the pharmacological effects of ginseng and ginsenosides on the liver functions.


2020 ◽  
Vol 10 ◽  
Author(s):  
Mohaddese Mahboubi

: Arctium lappa or burdock (Compositae family) is a perennial plant, native to Europe, Northern Asia and North America. Burdock roots are known as detoxifying herb to clear toxins from the bloodstream. It seems that its effects are on the liver functions as the main part of body in detoxifying the bloodstream. The aim of this review article was to evaluate the potency of burdock in management of liver functions in detoxifying the bloodstream. The information was extracted from electronic resources (Google scholar, Science Direct, Springer, Magiran). The results of our investigation exhibited that the studies are limited to animal studies, but the results of investigations showed that burdock roots detoxify the liver against ethanol, carbon tetrachloride (CCL4), acetaminophen, cadmium and zinc oxide by improving the functions of liver enzymes. The antioxidant, anti-inflammatory and prebiotic effects of burdock roots may involve in its effects on liver enzymes and detoxifying the blood. The large clinical studies are required to confirm its efficacy on liver functions and detoxify the liver.


2009 ◽  
Vol 50 ◽  
pp. S310
Author(s):  
Y. Malato ◽  
N. Beraza ◽  
N. Gassler ◽  
M. Al-Masaoudi ◽  
C. Liedtke ◽  
...  

2011 ◽  
Vol 2011 ◽  
pp. 1-12 ◽  
Author(s):  
Linda Hammerich ◽  
Felix Heymann ◽  
Frank Tacke

Unbalanced Th1/Th2 T-cell responses in the liver are a characteristic of hepatic inflammation and subsequent liver fibrosis. The recently discovered Th17 cells, a subtype of CD4+T-helper cells mainly producing IL-17 and IL-22, have initially been linked to host defense against infections and to autoimmunity. Their preferred differentiation upon TGFβand IL-6, two cytokines abundantly present in injured liver, makes a contribution of Th17 cells to hepatic inflammation very likely. Indeed, initial studies in humans revealed activated Th17 cells and Th17-related cytokines in various liver diseases. However, functional experiments in mouse models are not fully conclusive at present, and the pathogenic contribution of Th17 cells to liver inflammation might vary upon the disease etiology, for example, between infectious and autoimmune disorders. Understanding the chemokines and chemokine receptors promoting hepatic Th17 cell recruitment (possibly CCR6 or CCR4) might reveal new therapeutic targets interfering with Th17 migration or differentiation in liver disease.


1998 ◽  
Vol 94 (5) ◽  
pp. 549-555 ◽  
Author(s):  
Richard O. C. Oreffo ◽  
Stéphanie Bord ◽  
James T. Triffitt

1. Stem and progenitor cells present within bone marrow give rise to colony forming units-fibroblastic (CFU-F) which can differentiate into fibroblastic, osteogenic, myogenic, adipogenic and reticular cells. The decrease in skeletal bone formation and rate of fracture repair observed with ageing and in osteoporosis has been suggested to be due to a decrease in numbers of these progenitors, but human studies are limited. 2. We have tested the potential to form CFU-F in a total of 99 patients undergoing corrective surgery (16 controls, 14–48 years of age) or hip arthroplasty for osteoarthritis (57 patients, 28–87 years of age) or osteoporosis (26 patients, 69–97 years of age). Total colony number, alkaline phosphatase-positive colony number and colony size were determined. 3. No decrease in colony forming efficiency under the culture conditions used was observed in all populations examined irrespective of age, disease or gender, as determined by the lack of correlation between colony formation and age. 3. Examination of colony sizes showed a significant reduction in colony size with age in osteoarthritis and in control populations indicating a change in cellular proliferative potential with age. 4. Examination of number and percentage of alkaline phosphatase-positive CFU-F showed a significant decrease in osteoporotic patients compared with controls and osteoarthritis patients, indicating altered differentiation potential. 5. These results suggest that the reduction in bone mass with ageing may be due to reduction of the proliferative capacity of progenitor cells or their responsiveness to biological factors leading to alteration in subsequent differentiation. The maintenance of CFU-F number and alkaline phosphatase activity in these osteoarthritis patients may, in part, explain the inverse relationship observed for the preservation of bone mass between generalized osteoarthritis and primary osteoporosis.


2001 ◽  
Vol 33 (1-2) ◽  
pp. 585-586 ◽  
Author(s):  
A Suzuki ◽  
Y.-W Zheng ◽  
K Fukao ◽  
H Nakauchi ◽  
H Taniguchi

Author(s):  
Manon Allaire ◽  
Hélène Gilgenkrantz

Abstract Alcoholic and non-alcoholic fatty liver diseases are the leading causes of cirrhosis in Western countries. These chronic liver diseases share common pathological features ranging from steatosis to steatohepatitis. Fatty liver is associated with primary liver graft dysfunction, a higher incidence of complications/mortality after surgery, in correlation with impaired liver regeneration. Liver regeneration is a multistep process including a priming phase under the control of cytokines followed by a growth factor receptor activation phase leading to hepatocyte proliferation. This process ends when the initial liver mass is restored. Deficiency in epidermal growth factor receptor (EGFR) liver expression, reduced expression of Wee1 and Myt1 kinases, oxidative stress and alteration in hepatocyte macroautophagy have been identified as mechanisms involved in the defective regeneration of fatty livers. Besides the mechanisms, we will also discuss in this review various treatments that have been investigated in the reversal of the regeneration defect, for example, omega-3 fatty acids, pioglitazone, fibroblast growth factor (FGF)19-based chimeric molecule or growth hormone (GH). Since dysbiosis impedes liver regeneration, targeting microbiota could also be an interesting therapeutic approach.


Sign in / Sign up

Export Citation Format

Share Document