Electroless Plating of Ni-P-CNTs Composite Coating

2007 ◽  
Vol 280-283 ◽  
pp. 1445-1448 ◽  
Author(s):  
Guo Gang Zhao ◽  
Fu Ming Deng

Ni-P-CNTs composite coating were deposited by electroless plating. The factors which influenced the content of carbon nanotubes in deposits, such as the types of agitation, surfactants and carbon nanotubes concentration in the plating bath, were examined. The surface morphology, structure and properties, such as microhardness, wear resistance and friction coefficient of the -CNTs coating, were investigated. The results showed that the Ni-P-CNTs composite coating greatly increased the hardness and wear resistance and decreased the coefficient of friction with the increase of the content of carbon nanotubes in deposits, and the introduced carbon nanotubes did not change the structure of the Ni-P marix of the composite coating.

2013 ◽  
Vol 652-654 ◽  
pp. 1862-1865
Author(s):  
Hua Chen ◽  
Hai Ying Sun ◽  
Su Qiu Jia

Ni-P diamond particles (20μm) composite coating on friction shims were prepared by electroless plating. Morphology and phase composition of the composite coating were measured by SEM with EDS and XRD. The friction coefficient of the coating was test with scratch test. The results showed that diamond particles distribution was uniform and not stacked by two steps for 10 min. The diamond particles were half embedded in the Ni-P substrate. The element of the coating was Ni,P,C and the phase composition was Ni and diamond. Adhesion of the composite coating was higher than that of the Ni-P coating. Friction coefficients of the Ni-P coating and Ni-P composite coating were 0.47 and 0.18. Half –naked diamond particles played a pinning role and prevented from wear of the coating to get the big friction coefficient and good wear resistance. This Ni-P composite coating on friction shims would improve friction shims technology and realize the production of localization of friction shims.


Tribologia ◽  
2018 ◽  
Vol 279 (3) ◽  
pp. 77-82 ◽  
Author(s):  
Maciej KUJAWA

Plastic plain bearings are deformed during assembly. According to one of the leading manufacturers of plastic sliding elements, the bushing’s internal diameter may be reduced by up to 2.5%. Moreover, plastic sliding elements are increasingly used in harsh conditions (e.g., under high pressure). However, there are no papers that describe the influence of deformation under compression on the tribological properties of plastics. Specimens made of PTFE, PA6, and PE-HD were deformed while conducting the current research, and this deformation was maintained during cooperation with steel. The results of microhardness, wear, and the coefficient of friction tests were compared to data gathered during tests of non-deformed specimens. During deformation under compression (e ≈ 6%), microhardness lowered by up to 30% (PTFE). A significant reduction of hardness (by up to 15%) was observed when strain was only 2%, and up to this value of strain, there is mainly elastic deformation in the polymer. Changes of the coefficient of friction values were insignificant. In terms of PTFE and PE-HD, during deformation under compression up to e ≈ 6% , the block scar volumes were 20% and 40% larger, respectively, than the non-deformed form of specimens. In terms of PA6, the change in block scar volume was insignificant. It may seem that tension and compression ought to cause totally different effects. However, the comparison of the current results and the results described in the previous paper exposes that these two different processes led to the same effects – reducing hardness and increasing wear. Deformation of plastic sliding components as an effect of assembly appears to be minor; however, it affects polymer microhardness and wear resistance.


2011 ◽  
Vol 189-193 ◽  
pp. 173-176
Author(s):  
Zhong Jia Huang ◽  
Dang Sheng Xiong ◽  
Jian Liang Li ◽  
Ming Lang Liu

The MoS2 powders was coated with Al2O3 ratio varying 5wt.% to 50wt.% content. Ni–MoS2/Al2O3 composite coatings were prepared by means of pulse electrodeposition in a nickel-plating bath containing MoS2/Al2O3 powder to be co-deposited. The dependence of surface morphology, microhardness and tribological properties of the composite coatings was investigated in relation to the Al2O3 ratio in MoS2/Al2O3 powder. The results demonstrate that the coating co-deposited with MoS2/50wt.%Al2O3 showed a compact and fine granular surface morphology; the highest microhardness and wear resistance. The hardness of Al2O3 is responsible for this improvement.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Ting Wang ◽  
Hanfei Guo ◽  
Jianjun Qiao ◽  
Xiaoxue Liu ◽  
Zhixin Fan

PurposeTo address the lack of data in this field and determine the relationship between the coefficient of friction and the interference between locomotive wheels and axles, this study evaluates the theoretical relationship between the coefficient of friction and the interference under elastic deformation.Design/methodology/approachWhen using numerical analyses to study the mechanical state of the contacting components of the wheels and axle, the interference between the axle parts and the coefficient of friction between the axle parts are two important influencing factors. Currently, as the range of the coefficient of friction between the wheel and axle in interference remains unknown, it is generally considered that the coefficient of friction is only related to the materials of the friction pair; the relationship between the interference and the coefficient of friction is often neglected.FindingsA total of 520 press-fitting experiments were conducted for 130 sets of wheels and axles of the HXD2 locomotive with 4 types of interferences, in order to obtain the relationship between the coefficient of friction between the locomotive wheel and axle and the amount of interference. These results are expected to serve as a reference for selecting the coefficient of friction when designing axle structures with the rolling stock, research on the press-fitting process and evaluations of the fatigue life.Originality/valueThe study provides a basis for the selection of friction coefficient and interference amount in the design of locomotive wheels and axles.


2019 ◽  
Vol 26 (1) ◽  
pp. 77-83 ◽  
Author(s):  
Fangfang Wang ◽  
Lajun Feng ◽  
Huini Ma ◽  
Zhe Zhai ◽  
Zheng Liu

Abstract To improve the wear resistance of polyurethane (PU) coating and its adhesion to the steel substrate, a series of simple and practicable techniques were designed to mix nano-SiO2 with PU powder to cast a coating layer onto the steel. When the addition of nano-SiO2 was small, a network structure of PU-SiO2 was produced. It improved the wear resistance of the composite coating and its adhesion to the steel substrate. When the addition of nano-SiO2 was excessive, agglomerated nano-SiO2 particles not only affected the bond between the PU resin and the steel substrate but also became abrasive materials, intensifying the abrasion of the composite coating during friction. It resulted in lower bonding strength and poorer wear resistance of the composite coating. The wear rate and friction coefficient of 2 wt.% SiO2/PU composite coating were 1.52×10−6 cm3/min N and 0.31, respectively. Its wear resistance was about 10 times as high as that of the pure PU coating. Furthermore, a simple and practicable installation was designed to test the bonding strength between the coating and the steel substrate. The bonding strength between 2 wt.% SiO2/PU composite coating and the steel substrate was 7.33 MPa, which was 39% higher than that of the pure PU coating.


Author(s):  
В.Ю. Фоминский ◽  
В.Н. Неволин ◽  
Д.В. Фоминский ◽  
Р.И. Романов ◽  
М.Д. Грицкевич

The results of a comparative study of the friction and wear of MoSx and MoSex thin film coatings that was carried out in an oxidizing medium (a mixture of argon and air) at a temperature of -100°C are presented. The films were obtained by pulsed laser deposition from MoS2, MoSe2, and Mo targets in vacuum and H2S. It was established that Se-containing coatings significantly exceeded the S-containing coatings in terms of wear resistance and provided a friction coefficient of ~ 0.09. The properties of MoSx films depended on the S concentration, which determines the local packing of atoms in the amorphous structure of the film. The coefficient of friction for MoS3 films after running-in turned out to be half as much as that for MoS2 films, and its value was 0.08.


Author(s):  
K. Miyoshi ◽  
K. W. Street ◽  
R. L. Vander Wal ◽  
R. Andrews ◽  
David Jacques ◽  
...  

To evaluate recently developed aligned multiwalled carbon nanotubes (MWNTs) and dispersed MWNTs for solid lubrication applications, unidirectional sliding friction experiments were conducted with 440C stainless steel balls and hemispherical alumina-yttria stabilized zirconia pins in sliding contact with the MWNTs deposited on quartz disks in air and in vacuum. The results indicate that MWNTs have superior solid lubrication friction properties and endurance lives in air and vacuum under dry conditions. The coefficient of friction of the dispersed MWNTs is close to 0.05 and 0.009 in air and in vacuum, respectively, showing good dry lubricating ability. The wear life of MWNTs exceeds 1 million passes in both air and vacuum showing good durability. In general, the low coefficient of friction can be attributed to the combination of the transferred, agglomerated patches of MWNTs on the counterpart ball or pin surfaces and the presence of tubular MWNTs at interfaces.


Micromachines ◽  
2019 ◽  
Vol 10 (7) ◽  
pp. 448 ◽  
Author(s):  
Jichun Xing ◽  
Huajun Li ◽  
Dechun Liu

Tactile feedback technology has important development prospects in interactive technology. In order to enrich the tactile sense of haptic devices under simple control, a piezoelectric haptic feedback device is proposed. The piezoelectric tactile feedback device can realize tactile changes in different excitation voltage amplitudes, different excitation frequencies, and different directions through the ciliary body structure. The principle of the anisotropic vibration of the ciliary body structure was analyzed here, and a tactile model was established. The equivalent friction coefficient under full-coverage and local-coverage of the skin of the touch beam was deduced and solved. The effect of system parameters on the friction coefficient was analyzed. The results showed that in the full-coverage, the tactile effect is mainly affected by the proportion of the same directional ciliary bodies and the excitation frequency. The larger the proportion of the same direction ciliary body is, the smaller the coefficient of friction is. The larger the excitation frequency is, the greater the coefficient of friction is. In the local-coverage, the tactile effect is mainly affected by the touch position and voltage amplitude. When changing the touch pressure, it has a certain effect on the change of touch, but it is relatively weak. The experiment on the sliding friction of a cantilever touch beam and the experiment of human factor were conducted. The experimental results of the sliding friction experiment are basically consistent with the theoretical calculations. In the human factor experiment, the effects of haptic regulation are mainly affected by voltage or structure of the ciliary bodies.


2017 ◽  
Vol 31 (16-19) ◽  
pp. 1744028
Author(s):  
See Leng Tay ◽  
Jowin Van Vliet ◽  
Yuxin Wang ◽  
Fengyan Hou ◽  
Chao Xiong ◽  
...  

Gold (Au) coatings are widely used for electrical contacts in devices, decoration and jewelry. However, the relatively low hardness and poor wear resistance of pure Au coatings lead to a short service life and limit their application. Ni is frequently used as an alloying element to enhance the hardness but it lowers the conductivity of Au coatings. In this research, Co was co-deposited as an alloying element with Au to improve its mechanical properties while maintaining conductivity. TiO2 sol in different concentrations was added to the Au–Co plating bath to further enhance the coating strength. Systematic studies including surface morphology, hardness, wear resistance and electrical conductivity have been carried out. Key results from nanoindentation tests demonstrated that the hardness of Au–Co–TiO2 composite coating was increased by 30% when compared to a pure Au–Co coating, while the electrical conductivity has been kept at the same level.


2004 ◽  
Vol 818 ◽  
Author(s):  
Xicheng Ma ◽  
Ning Lun ◽  
Xia Li ◽  
Shulin Wen

AbstractCreating hybrid nanostructures of disparate nanoscale blocks is of interest of exploring new types of electronic devices and networks. Here, we demonstrate the novel coupling of gold nanoparticles of 3-4 nm diameters to sidewall of multiwalled carbon nanotubes (MWNTs) using the electroless plating technique. MWNTs were initially chemically modified with an H2SO4-HNO3 acid treatment, and subsequently activated with Pd-Sn catalytic nuclei via a one-step activation approach. When the activated MWNTs were immersed in a gold-containing electroless plating bath, gold deposition occurred at the catalytic sites. The deposited gold clusters then catalyze further gold deposition on the tube surface (autocatalytic process). Novel hybrid nanostructures with gold nanoparticles homogeneously distributed on MWNTs resulted. High-resolution transmission electron microscopy (HRTEM) and energy dispersive X-ray spectroscopy (EDS) were used to characterize the conjugation process.


Sign in / Sign up

Export Citation Format

Share Document