INFLUENCE CuAl10Fe3Mn2 ADDITI VE ON ULTIMATE TENSILE STRENGTH AND WEAR OF Al-9%SiMg ALLOY

Tribologia ◽  
2018 ◽  
Vol 279 (3) ◽  
pp. 83-89
Author(s):  
Tomasz LIPIŃSKI

One of the most common castings applied in industrial production is aluminium-silicon alloy (ca. 9% Si with Mg). The Al-SiMg alloys have high corrosion resistance, high strength to weight ratio with modifications, very good castability, a low thermal-expansion coefficient, and relatively good wear resistance. These properties make it possible to widely apply the foundry Al-9% SiMg alloy to number of aviation, automotive, and others materials working on tribological applications. Similar to silumins, the aluminium bronze CuAl10Fe3Mn2 is characterized by good mechanical properties and wear and corrosion resistance. This paper presents the research on the treatment of Al-9%SiMg alloy with a composition of CuAl10Fe3Mn2 in different mass ranges. The experiments were conducted by a factor plan 23 for three independent variables. The main additions were strontium, Al-9%SiMg, aluminium bronze, as well as pure or melted with raw silumin. The effect of the tested additions on the microstructure and tensile strength of the Al-9%SiMg alloy was presented in figures. All analysed parameters (mechanical and tribological) of the hypo-eutectic Al-9%SiMg alloy with tested bronze additions are improved. Based on the analysis of the study results, it was found that the microstructure and tensile strength of the tested alloy are determined through the contents introduced of CuAl10Fe3Mn2 to the alloy.

2020 ◽  
Vol 15 (4) ◽  
Author(s):  
Mahesh Mallampati ◽  
Sreekanth Mandalapu ◽  
Govidarajulu C

The composite materials are replacing the traditional materials because oftheir superior properties such as high tensile strength, low thermal expansion, high strength to weight ratio, low cost, lightweight, high specific modulus, renewability and biodegradability which are the most basic & common attractive features of composites that make them useful for industrial applications. The developments of new materials are on the anvil and are growing day by day. The efforts to produce economically attractive composite components have resulted in several innovative manufacturing techniques currently being used in the composites industry. Generally, composites consist of mainly two phases i.e., matrix and fiber. In this study, woven roving mats (E-glass fiber orientation (-45°/45°,0°/90°, - 45°/45°),UD450GSM)were cut in measured dimensions and a mixture of Epoxy Resin (EPOFINE-556, Density-1.15gm/cm3), Hardener (FINE HARDTM 951, Density- 0.94 gm/cm3) and Acetone [(CH3)2CO, M= 38.08 g/mol] was used to manufacture the glass fiber reinforced epoxy composite by hand lay-up method. Mechanical properties such as tensile strength, SEM analysis, hardness test, density tests are evaluated.


Metals ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 662
Author(s):  
Reza Hashemi

Metallic biomaterials (biometals) are widely used for the manufacture of medical implants, ranging from load-bearing orthopaedic prostheses to dental and cardiovascular implants, because of their favourable combination of properties including high strength, fracture toughness, biocompatibility, and wear and corrosion resistance [...]


Author(s):  
P. V. Rajesh ◽  
M. Sriram Prasanth ◽  
V. Sam Daniel ◽  
C. M. Saravanan

Aluminium Matrix Composites are extensively used due to their desirable properties like low weight, low cost, high strength to weight ratio, good corrosion resistance, good thermal conductivity and high stiffness. Their applications are diversified in production, thermal, marine and automobile industries. Aluminium is extensively used in ships, aircrafts, cars, electrical wires and household utensils because it is abundant in nature. In the present study, Aluminium alloy Al6061 Hybrid Composites reinforced with Boron carbide and Coconut shell ash are fabricated to replace the individual Aluminium alloy Al6061. For that various tests to determine properties such as strength, hardness, wear and corrosion resistance are conducted on composite samples which make them fit to be used in aircraft window frames by reviewing various literatures. In addition to above, machinability analysis is performed on all the specimens and their surface roughness is measured. Based on the results obtained, we can come to a conclusion that the aluminium composite has superior properties than individual Al6061 alloy.


Coatings ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 809 ◽  
Author(s):  
Dariusz Bartkowski ◽  
Aneta Bartkowska ◽  
Adam Piasecki ◽  
Peter Jurči

The paper presents the study results of a laser cladding process of C45 steel using powder mixtures. The aim of this study was to investigate the microstructure, X-ray diffraction (XRD), chemical composition (EDS), microhardness, corrosion resistance and wear resistance of the newly obtained coatings. Modified coatings were prepared using laser cladding technology. A 1 kW continuous wave Yb:YAG disk laser with a powder feeding system was applied. Two different powder mixtures as well as various laser beam parameters were used. The first powder mixture contained Fe–B, and the second mixture was Fe–B–B4C–Si. Two values of laser beam power (600 and 800 W) and three values of scanning speed (600, 800, and 1000 mm/min) were applied during the studies. As a result of the influence of the laser beam, the zones enriched with modifying elements were obtained. Based on the results of XRD, the presence of phases derived from borides and carbides was found. In all cases analyzed, EDS studies showed that there is an increased content of boron in the dendritic areas, while there is an increased silicon content in interdendritic spaces. The addition of B4C and Si improved properties such as microhardness as well as wear and corrosion resistance. The microhardness of the coating increased from approx. 400 HV to approx. 1100 HV depending on the laser parameters used. The best corrosion resistance was obtained for the Fe–B–B4C–Si coating produced using the highest laser beam scanning speed. An improvement in wear resistance can be seen after wear tests, where the weight loss decreased from about 0.08 g to about 0.05 g.


Coatings ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 292
Author(s):  
Irina Smolina ◽  
Karol Kobiela

This paper presents the method of preparation and study results of the Stellite 6 laser surface alloyed (LSA) with rhenium using na LDF diode laser (4000 W). During this process, a rhenium powder was introduced onto the surface of the Co-based alloy. The possibility of improving wear and corrosion resistance properties is interesting and worth investigating. The selected process parameters: the laser power of 900 W, powder feed rate in the range 1.92–3.83 g/min, and necessarily preheating of the substrate up to 200 °C—allowing to obtain the LSA layers on the Stellite 6 substrate. Depending on the process parameters, it is possible to modify the substrate’s surface layer in terms of rhenium concentration and geometrical characteristics of the laser tracks. It was found that undissolved particles of rhenium in laser-alloyed layers have a non-significant effect on their hardness and abrasion resistance. The laser surface-alloyed corrosion potential is better than the corrosion potential of the Stellite 6 substrate, including reducing resistance to pitting corrosion with a high ability to repassivation.


Alloy Digest ◽  
1966 ◽  
Vol 15 (6) ◽  

Abstract CUNISIL-647 is a copper-nickel-silicon precipitation-hardening alloy having high strength, hardness, wear and corrosion resistance. Typical applications include electrical hardware and fasteners. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on forming, heat treating, and machining. Filing Code: Cu-164. Producer or source: Anaconda American Brass Company.


Alloy Digest ◽  
1961 ◽  
Vol 10 (7) ◽  

Abstract TANTUNG G is a cast nonferrous alloy containing tantalum or columbium carbide and having wear and corrosion resistance. It is used primarily for cutting tools. This datasheet provides information on composition, physical properties, hardness, and tensile properties. It also includes information on forming, heat treating, machining, and joining. Filing Code: Co-28. Producer or source: Vascoloy, Ramet Division.


Alloy Digest ◽  
2012 ◽  
Vol 61 (5) ◽  

Abstract Tungum alloy combines an unusually high strength-to-weight ratio, with ductility, excellent corrosion resistance, and good fatigue properties. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on corrosion resistance as well as forming. Filing Code: Cu-806. Producer or source: Tungum Ltd.


Sign in / Sign up

Export Citation Format

Share Document