scholarly journals An Application of a Special Method for Designating the Control Forces for the Homing of an Anti-Aircraft Missile on an Aerial Target by Use of a Method of Proportional Navigation

2018 ◽  
Vol 9 (4) ◽  
pp. 149-162
Author(s):  
Konrad STEFAŃSKI

An analysis of application feasibility of a special method for surface-to-air missile (SAM) control during homing on an airborne target was carried out in this paper. A prior implementation of the method was motion control for a gyroscope axis with three degrees of freedom [1, 2] at the stages of spatial seeking and tracking of a detected target. The positive results obtained during that research led to a conclusion that the proposed control method would be appropriate for the determination of the control forces for missile guidance. This method consists of the application of the phase trajectories of control errors. Switching over of the control forces at suitable phase plane points reduced the control errors to zero and facilitated a proper flight path of the SAM. This paper presents a switching algorithm, equations of the kinematics and dynamics of SAM flight, and a number of examples of numerical simulations of the problem contemplated herein. The simulation results were represented in a graphic format.

2016 ◽  
Vol 817 ◽  
pp. 93-103
Author(s):  
Konrad Stefański

This paper presents the analysis of the variety of methods regarding aerial guided bomb control during the ground attack on a moving target. Based on this method there was an earlier research regarding motion control of the three degrees of freedom gyroscope axis [1,2] during space exploration and discovered target tracking. Positive results obtained during that research led to conclusion that the proposed control method will be accurate to establish a control force for aerial bomb guiding. This method is based on the use of phase trajectories control deviations. Switching of the control forces in the particular phase plane points causes the deviations to decrease to zero and facilitates the proper trajectory of the bomb. This paper presents a switching algorithm, equations of kinematics and dynamics of a bomb flight-path and the variety of examples of a numerical simulations. Obtained results were presented in the graphic form.


1971 ◽  
Vol 93 (1) ◽  
pp. 191-195 ◽  
Author(s):  
Desideriu Maros ◽  
Nicolae Orlandea

This paper is a further development of the kinematic problem presented in our 1967 paper [1] in which we have obtained the transmission functions for different orders of plane systems with many degrees of freedom. This paper establishes the corresponding system of differential equations of motion beginning with these functions. The purpose of this paper is to facilitate computer programming. Our study is based on the work of R. Beyer [2, 3] and is the first original addition to his papers. A second original contribution to Beyer’s theories is the deductive method of solution, from general to particular, which we have, incorporated in our work. Beyer concluded that the cases having two or three degrees of freedom can be considered as particular solutions to the results obtained.


Robotica ◽  
2015 ◽  
Vol 35 (5) ◽  
pp. 1121-1136 ◽  
Author(s):  
Emre Uzunoğlu ◽  
Mehmet İsmet Can Dede

SUMMARYIn this study, a bilateral teleoperation control algorithm is developed in which the model-mediation method is integrated with an impedance controller. The model-mediation method is also extended to three-degrees-of-freedom teleoperation. The aim of this controller is to compensate for instability issues and excessive forcing applied to the slave environment stemming from time delays in communication. The proposed control method is experimentally tested with two haptic desktop devices. Test results indicate that stability and passivity of the bilateral teleoperation system is preserved under variable time delays in communication. It is also observed that safer interactions of the slave system with its environment can be achieved by utilizing an extended version of the model-mediation method with an impedance controller.


2014 ◽  
Vol 19 (1) ◽  
pp. 5-15 ◽  
Author(s):  
J. Bałchanowski

Abstract The paper presents elements of the topology, geometry and the kinematic analysis of a translational parallel mechanism with three degrees of freedom. In such mechanisms the selection of a proper structure and geometry ensures that the driven link maintains a fixed orientation relative to the base. The method of determination of the configuration of mechanisms using contour vector notation was elaborated in the paper. The equations for the analysis of the direct and inverse kinematics task are determined. An analytical procedure for determining the system’s singular positions is presented and illustrated with examples


2012 ◽  
Vol 09 (01) ◽  
pp. 1250003 ◽  
Author(s):  
PAUL-FRANÇOIS DOUBLIEZ ◽  
OLIVIER BRUNEAU ◽  
FETHI BEN OUEZDOU

This paper proposes an energy control method for dynamic obstacle crossing by a planar biped. This approach was tested in a simulation where it was found to enable the biped robot to cross obstacles of different heights, due to inertial forces, by leaning with the front foot on the obstacles. The propulsion energy of the system is produced by the rear leg, which is endowed with four actuated degrees-of-freedom (hip, knee, ankle, toes), and is controlled by force control with four degrees-of-freedom in the non-singular case, and three degrees-of-freedom in the singular case. This paper identifies ten geometric, energetic and servo-control parameters necessary for dynamic obstacle crossing. The methodology presented allowed the dynamic crossing of an obstacle up to 20 cm high, at which point the joint torque limit for the propelling ankle was reached.


Author(s):  
Lei Zhang ◽  
Wendong Wang ◽  
Yikai Shi ◽  
Jiahao Liu ◽  
Yang Chu ◽  
...  

Most of the current rehabilitation equipment is bulky and slow to respond. Therefore, we designed a portable three-degree-of-freedom exoskeleton and discrete-mode control system for this situation. The three degrees of freedom of the exoskeleton robot arm was the wrist swing, the forearm lateral movement, and the elbow rotation. We collected the EMG signals of the biceps and triceps, then filtered the acquired EMG signals and extracted features in order to obtain effective information that reflected the activity intentions. Based on this, a discrete motion control method using the EMG signals to achieve elbow rotation was designed. Experiment suggests that the average pattern recognition accuracy rate can reach more than 90%.


2014 ◽  
Vol 529 ◽  
pp. 534-538
Author(s):  
Yuan Yuan Li ◽  
Huang Qiu Zhu

In the paper, the decoupling control method based on least square support vector machine (LS-SVM) inverse system is proposed, and adopting the method realizes decoupling control of an AC-DC three degrees of freedom hybrid magnetic bearing (AC-DC-3DOF-HMB). Aimed at the complicated multivariate nonlinear, strong coupling system of the AC-DC-3DOF-HMB, the reversibility of original system was analyzed, by the ability of least square support vector machines (LS-SVM) in universal approximation and identification fitting to get inverse model of AC-DC three degrees of freedom hybrid magnetic bearing. Then according to the basic principle of inverse system method, the inverse system was connected with the original system. So the complex nonlinear multivariable system is decoupled into three independent pseudo-linear system. The simulation results show that the system was decoupled; the hybrid control method has good dynamic and static performance, verify the feasibility of the proposed control method.


2017 ◽  
Vol 29 (3) ◽  
pp. 580-590 ◽  
Author(s):  
Iori Murasawa ◽  
◽  
Shuhei Murofushi ◽  
Chiharu Ishii ◽  
Hideki Kawamura ◽  
...  

[abstFig src='/00290003/13.jpg' width='300' text='Robotic laparoscope' ] In this work, a control method for a robotic laparoscope using a motion sensor, namely Kinect for Windows, is proposed so that the surgeon can operate the laparoscope with his/her head motions. In the control system of the robotic laparoscope, four types of head motion (up, down, left, and right), as well as the open-and-close motion of the mouth, are distinguished via a Kinect sensor. The tip of the robotic laparoscope is controlled in order to follow the head direction that is desired by the surgeon. In addition, the surgeon can change the tip speed of the robotic laparoscope through the open-and-close motion of the mouth, in accordance with the operational situation. For validation purposes, the proposed control system was applied to a robotic laparoscope of three degrees of freedom, which was built for the surgical robot for single-port surgery (SPS) that was developed in our previous study, and verification experiments were conducted. It was verified that the operator can control the tip of the robotic laparoscope intuitively, and the tip position of the robotic laparoscope can track the target position quickly and accurately.


Author(s):  
Andrew Ross ◽  
Vahid Hassani ◽  
Ørjan Selvik ◽  
Edvard Ringen ◽  
Dariusz Fathi

A nonlinear manoeuvring model in three degrees of freedom is presented. MARINTEK’s approach to the numerical determination of this manoeuvering model’s parameters is then shown. Finally the process of taking advanced experimental methods, and utilising MARINTEK’s numerical tools to generate an advanced model available for use in VeSim, MARINTEK’s in-house simulator tool, is shown as a demonstration that the model combined with numerical tools is of great use in making manoeuvring predictions.


Sign in / Sign up

Export Citation Format

Share Document