scholarly journals Swarm Behaviour Optimisation Methods Based on an Original Algorithm

Author(s):  
Krzysztof FALKOWSKI ◽  
Michał DUDA

This article presents an authorial swarm algorithm that performs coverage tasks using the Sweep Coverage method. The presented solution assumes stochastic movement of the objects in the swarm which allows them to be simple ones. Our goal was to find an optimal number of objects in the swarm. The main evaluated factors are time and energy consumption. Changing input data allowed us to designate different cases and to examine the influence of varying parameters of a single boid on a whole swarm behaviour.

Author(s):  
Ahmad Reza Jafarian-Moghaddam

AbstractSpeed is one of the most influential variables in both energy consumption and train scheduling problems. Increasing speed guarantees punctuality, thereby improving railroad capacity and railway stakeholders’ satisfaction and revenues. However, a rise in speed leads to more energy consumption, costs, and thus, more pollutant emissions. Therefore, determining an economic speed, which requires a trade-off between the user’s expectations and the capabilities of the railway system in providing tractive forces to overcome the running resistance due to rail route and moving conditions, is a critical challenge in railway studies. This paper proposes a new fuzzy multi-objective model, which, by integrating micro and macro levels and determining the economical speed for trains in block sections, can optimize train travel time and energy consumption. Implementing the proposed model in a real case with different scenarios for train scheduling reveals that this model can enhance the total travel time by 19% without changing the energy consumption ratio. The proposed model has little need for input from experts’ opinions to determine the rates and parameters.


Membranes ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 43
Author(s):  
Manuel César Martí-Calatayud ◽  
Mario Sancho-Cirer Poczatek ◽  
Valentín Pérez-Herranz

Electrodialysis (ED) has been recently introduced in a variety of processes where the recovery of valuable resources is needed; thus, enabling sustainable production routes for a circular economy. However, new applications of ED require optimized operating modes ensuring low energy consumptions. The application of pulsed electric field (PEF) electrodialysis has been demonstrated to be an effective option to modulate concentration polarization and reduce energy consumption in ED systems, but the savings in energy are usually attained by extending the operating time. In the present work, we conduct a comprehensive simulation study about the effects of PEF signal parameters on the time and energy consumption associated with ED processes. Ion transport of NaCl solutions through homogeneous cation-exchange membranes is simulated using a 1-D model solved by a finite-difference method. Increasing the pulse frequency up to a threshold value is effective in reducing the specific energy consumption, with threshold frequencies increasing with the applied current density. Varying the duty cycle causes opposed effects in the time and energy usage needed for a given ED operation. More interestingly, a new mode of PEF functions with the application of low values of current during the relaxation phases has been investigated. This novel PEF strategy has been demonstrated to simultaneously improve the time and the specific energy consumption of ED processes.


Author(s):  
Qingzhu Wang ◽  
Xiaoyun Cui

As mobile devices become more and more powerful, applications generate a large number of computing tasks, and mobile devices themselves cannot meet the needs of users. This article proposes a computation offloading model in which execution units including mobile devices, edge server, and cloud server. Previous studies on joint optimization only considered tasks execution time and the energy consumption of mobile devices, and ignored the energy consumption of edge and cloud server. However, edge server and cloud server energy consumption have a significant impact on the final offloading decision. This paper comprehensively considers execution time and energy consumption of three execution units, and formulates task offloading decision as a single-objective optimization problem. Genetic algorithm with elitism preservation and random strategy is adopted to obtain optimal solution of the problem. At last, simulation experiments show that the proposed computation offloading model has lower fitness value compared with other computation offloading models.


Sensor Review ◽  
2018 ◽  
Vol 38 (3) ◽  
pp. 369-375 ◽  
Author(s):  
Sathya D. ◽  
Ganesh Kumar P.

PurposeThis study aims to provide a secured data aggregation with reduced energy consumption in WSN. Data aggregation is the process of reducing communication overhead in wireless sensor networks (WSNs). Presently, securing data aggregation is an important research issue in WSNs due to two facts: sensor nodes deployed in the sensitive and open environment are easily targeted by adversaries, and the leakage of aggregated data causes damage in the networks, and these data cannot be retrieved in a short span of time. Most of the traditional cryptographic algorithms provide security for data aggregation, but they do not reduce energy consumption.Design/methodology/approachNowadays, the homomorphic cryptosystem is used widely to provide security with low energy consumption, as the aggregation is performed on the ciphertext without decryption at the cluster head. In the present paper, the Paillier additive homomorphic cryptosystem and Bonehet al.’s aggregate signature method are used to encrypt and to verify aggregate data at the base station.FindingsThe combination of the two algorithms reduces computation time and energy consumption when compared with the state-of-the-art techniques.Practical implicationsThe secured data aggregation is useful in health-related applications, military applications, etc.Originality/valueThe new combination of encryption and signature methods provides confidentiality and integrity. In addition, it consumes less computation time and energy consumption than existing methods.


2016 ◽  
Vol 5 (1) ◽  
pp. 60-69 ◽  
Author(s):  
Pablo R. Velasco González

Tiziana Terranova draws attention to the necessity of questioning how algorithmically enabled automation works “in terms of control and monetization” and “what kind of time and energy” is being subsumed by it (Terranova 387). Cryptocurrencies are payment technologies that automate the production of money-like tokens (Bergstra and Weijland) following algorithmic rules to maintain a fixed production rate. Different kinds of energy and residues, which are not always acknowledged, are involved in this process. Here I distinguish between two closely linked layers in the Bitcoin token production: first, an algorithmic layer, which contains the instructions and rules for the creation of bitcoins; second, a hardware layer, which performs and embodies the former. While these layers work together, I will argue that they enact their own kind of logics of energy and waste. I will begin at the more visible end of the production cycle, the hardware layer, where the definition of waste and energy consumption is shared with many electronic devices; then I will trace back its algorithmic layer, which as I argue, follows a different logic.


2021 ◽  
Vol 2113 (1) ◽  
pp. 012038
Author(s):  
Mingzheng Yuan

Abstract This research designs an absolute-value detector with the function of threshold comparing. Specifically, it is an essential device in the spike detection of the brain-machine interface. The optimized design in the research can accomplish the main functions in spike detection and has good performance in both delay and energy consumption. It comes up with two types of design at the beginning. To make the design reliable and comprehensive, it decides to discuss both methods in this paper. The first design is using a full adder, multiplexer and comparator. The concept of its logic circuit is adding the logic one to the input when the given input data is negative, keeping the original information as the given input data is positive. To achieve the function of adding, this study chooses the full adders. The primary purpose of using multiplexers is to select from the processed input and original input, and the choice depends on the most significant bit (MSB) of the input data. To compare the absolute value of the input data with a given threshold, this research used a multi-bit comparator. The second design is based on the fundamental algorithms of calculating total numbers. It indicates that this study can operate it with the threshold value through a subtractor when the input is negative. On the contrary, an adder can be used when the information is positive. Based on the concept of logic optimization, this study chooses to use the only subtractors, and it just needs to focus on the borrow bit, which can indicate the more significant number. By connecting the MSB of the input with the subtractors through XOR gates, the selection can be achieved without using any multiplexer. In the process of removing and replacing the devices, it reached the optimization of the design. Then, this paper compared the minimum delay by calculating each stage’s size and finding that the second design is better. Finally, based on the dual design, this essay computed the energy consumption in the circuit and implement VDD optimization to obtain the minimum energy.


Author(s):  
Qin Like ◽  
Dai Jun ◽  
Yuan Liqun

Microwave-assisted crushing and grinding can improve efficiency and reduce energy consumption. This paper takes rock grains with galena and calcite as the research object to establish a two-dimensional computational model through the finite difference software FLAC2D. It analyzes the process and law of mineral boundary failure under microwave irradiation, and assesses the effects of four factors, namely, microwave irradiation time, power density, mineral crystal size, and mineral content, on mineral boundary failure. Results indicate an optimal microwave irradiation period for the rapid failure of mineral boundary. Moreover, irradiation time and energy consumption can be reduced by increasing the microwave power density. However, irradiation time and energy consumption are basically unchanged when the microwave power density is above a certain threshold. Mineral content slightly affects the microwave irradiation time, whereas mineral crystal size significantly affects the microwave irradiation time. In addition, a larger-sized mineral crystal requires less irradiation time and energy consumption to reach the same failure rate. However, irradiation time and energy consumption slightly change when the crystal size is larger than a certain value.


Sign in / Sign up

Export Citation Format

Share Document