Meso-mechanics simulation analysis of microwave-assisted mineral liberation

Author(s):  
Qin Like ◽  
Dai Jun ◽  
Yuan Liqun

Microwave-assisted crushing and grinding can improve efficiency and reduce energy consumption. This paper takes rock grains with galena and calcite as the research object to establish a two-dimensional computational model through the finite difference software FLAC2D. It analyzes the process and law of mineral boundary failure under microwave irradiation, and assesses the effects of four factors, namely, microwave irradiation time, power density, mineral crystal size, and mineral content, on mineral boundary failure. Results indicate an optimal microwave irradiation period for the rapid failure of mineral boundary. Moreover, irradiation time and energy consumption can be reduced by increasing the microwave power density. However, irradiation time and energy consumption are basically unchanged when the microwave power density is above a certain threshold. Mineral content slightly affects the microwave irradiation time, whereas mineral crystal size significantly affects the microwave irradiation time. In addition, a larger-sized mineral crystal requires less irradiation time and energy consumption to reach the same failure rate. However, irradiation time and energy consumption slightly change when the crystal size is larger than a certain value.

2018 ◽  
Vol 18 (1) ◽  
pp. 53
Author(s):  
Ratnaningsih Eko Sardjono ◽  
Iqbal Musthapa ◽  
Iis Rosliana ◽  
Fitri Khoerunnisa ◽  
Galuh Yuliani

A new versatile macromolecule cyclic C-3,7-dimethyl-7-hydroxycalix[4]resorcinarene (CDHHK4R) has been synthesized from a fragrance agent, 7-hydroxycitronellal, via microwave irradiation. The reaction utilized a domestic microwave oven at various irradiation time and power to yield an optimum condition. As a comparison, the conventional heating method was also employed for the synthesis of the same calix[4]resorcinarene. Compared to the conventional method, microwave-assisted reaction effectively reduced the reaction time, the amount of energy consumption and the waste production. It is found that the synthesis of CDHHK4R by microwave irradiation yielded 77.55% of product, higher than by conventional heating which was only 62.17%.


2021 ◽  
Vol 67 (1) ◽  
Author(s):  
Monika Aniszewska ◽  
Krzysztof Słowiński ◽  
Ewa Tulska ◽  
Witold Zychowicz

AbstractThe paper proposes the use of microwave irradiation to lower the initial moisture content of wood chips. The study involved willow and fir chips fractionated by means of a sieve separator and unfractionated ash chips. The wood chips were exposed to a constant microwave power of 800 W for 30 s, 60 s, 120 s and 180 s. The chips were weighed before and after irradiation to measure loss of moisture. It was found that the decline in moisture content increased with wood chip size for a given irradiation time and microwave power. The initial moisture content of wood chips was not found to significantly affect loss of moisture as the drying rates of wood chips with higher and lower moisture content exposed to microwaves were not statistically different. The results showed that irradiation intensity increased with the time of exposure to microwaves and unit radiant energy per unit of evaporated moisture decreased with increasing wood chip size in the 3.15–31.50 mm range.


Author(s):  
Mousumi Chakraborty ◽  
Sanjay Baweja ◽  
Sunita Bhagat ◽  
TejpalSingh Chundawat

Abstract In the present study Schiff’s bases are synthesized by the conventional as well as by microwave irradiation. Excellent yield within short reaction time is obtained using microwave irradiation along with other advantages like mild reaction condition, non-hazardous and safer environmental conditions. The effects of temperature, reactant molar ratio, and microwave power variation on yield are observed. Mathematical model has been developed using matlab software to obtain the yield as a function of microwave power. Kinetic study of the reaction has also been attempted. Schiff’s bases structures are confirmed by IR, 1HNMR, Mass Spectra and elemental analysis.


2019 ◽  
Vol 19 (3) ◽  
pp. 796
Author(s):  
Noormazlinah Noormazlinah ◽  
Norlaili Hashim ◽  
Abdurahman Hamid Nour ◽  
Mimi Sakinah Abdul Munaim ◽  
Maria Pilar Almajano ◽  
...  

The traditional ways in the extraction of bioactive compounds using conventional methods are disadvantageous from both economic and environmental perspectives. In this, the potential of microwave-assisted hydrodistillation conditions for extraction of phytosterol from legume pods was investigated. Salkowski test performed on the legume pod has shown the reddish brown in all sample which confirmed the presence of phytosterol qualitatively. Liebermann-Burchard procedure and ultraviolet-visible spectroscopy (UV-Vis) apparatus were used to study the concentration of phytosterol at different extraction parameters which are temperature (25–80 °C), solvent concentration (50–100% v/v), irradiation time (1–10 min) and microwave power (400–800 W). The optimal conditions for highest yield of extract (0.219 mg/L) were obtained at a microwave power of 600 W, the irradiation time of 6 min, and ethanol concentration of 75% v/v. Results obtained in this study have shown the capability of microwave-assisted hydrodistillation in the extraction of phytosterol from legume pod. Further works are nevertheless required to provide a deeper understanding of the mechanisms involved to facilitate the development of an optimum system applicable to the industry.


2013 ◽  
Vol 864-867 ◽  
pp. 1680-1683
Author(s):  
Xiao Tong Guan ◽  
Da Wei Yu

Acidic wastewater was treated by microwave irradiation Fenton’s reagent, the effect factors: initial concentration of wastewater, dosage of H2O2, microwave irradiation time, microwave power and pH on Acidic wastewater were investigated. The optimal conditions of operation are determined as follows: microwave power is 480W, microwave irradiation time is 5min, H2O2 is 2.0mL and FeSO4 is 0.07g, pH=1. Under these conditions, the COD removal rate is 90.15% for 50mL Acidic wastewater(be diluted ten times).The result of wastewater treated by microwave irradiation Fenton’s reagent is obvious, and without secondary pollution to environment.


2013 ◽  
Vol 20 (1) ◽  
pp. 15-22
Author(s):  
Tian Li ◽  
Yuanyuan Zhang ◽  
Zhiyong Song ◽  
Hongtao Wu ◽  
Shuhao Li

AbstractSilver loaded montmorillonite (Ag-MMT) was prepared by ion exchange reaction under microwave irradiation. The effects of microwave irradiation time, AgNO3 concentration, and microwave power on the silver content of Ag-MMT were investigated using the Volhard method. The time of ion exchange reaction was found to be greatly shortened under microwave irradiation. The most suitable reaction condition was in 0.2 m AgNO3 under 100% microwave power irradiation for 4 min, and the silver content was determined and was found to be 1.23 wt%. The results of the Fourier transform infrared spectrum (FT-IR) and Ag+ release tests confirmed the successful loading of silver and its good slow-release property. The X-ray diffraction (XRD) patterns and ultraviolet-visible (UV-vis) spectra proved the existence of metallic Ag nanoparticles. The Ag-MMT showing a large inhibition zone, high inhibition ratio, and low minimum inhibitory concentration (MIC) value against Staphylococcus aureus ATCC6535 presented a very good antibacterial property.


Energies ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5891
Author(s):  
Rocío Maceiras ◽  
Víctor Alfonsín ◽  
Luis Seguí ◽  
Juan F. González

Biomass pretreatment has an important role in the production of cellulosic bioethanol. In this study, the effectiveness of microwave assisted alkaline pretreatment of algae waste was analysed. After pretreatment, the product was hydrolysed using sulphuric acid. The effects of microwave power, irradiating time, solid–liquid ratio and NaOH concentration were examined. Under the best conditions, the fermentable sugars were converted to cellulosic bioethanol using Saccharomyces Cerevisiae with a bioethanol yield of 1.93 ± 0.01 g/g and a fermentation efficiency of 40.4%. The reducing sugars concentration was 30% higher than that obtained from conventional hydrolysis without pretreatment. The obtained results suggest that microwave assisted alkaline pretreatment is effective in improving the production of cellulosic bioethanol of algae waste compared to that without microwave effect. Considering energy consumption, low microwave power and short microwave irradiation time are favourable for this pretreatment.


2019 ◽  
Vol 19 (2) ◽  
pp. 511 ◽  
Author(s):  
Oluwaseun Ruth Alara ◽  
Abdurahman Hamid Nour ◽  
Siti Kholijah Binti Abdul Mudalip

Microwave-assisted extraction (MAE) of phenolic compounds from Chromolaena odorata leaves was investigated using one-factor-at-a-time (OFAT) and two-level factorial design. The MAE parameters studied were irradiation time (A: 1–5 min); microwave power level (B: 400-800 W); extraction temperature (C: 60–80 °C); solvent/feed ratio (D: 8:1–14:1 mL/g); and ethanol concentration (E: 20–60% v/v). The optima yields of TPC and TFC were 56.13 mg GAE/g d.w. and 44.78 mg QE/g d.w., respectively were achieved from MAE of C. odorata leaf at irradiation time of 2 min, microwave power of 600 W, temperature of 60 °C, solvent:feed ratio of 10:1 mL/g, and ethanol concentration of 40% v/v through one-factor-at-time (OFAT) experimental trials. The results obtained from a two-level factorial design experiments reflected that only ethanol concentration (20–60% v/v), irradiation time (1–5 min) and microwave power level (400–800 W) had significant effects on the yields of total phenolic content (TPC) and total flavonoid content (TFC) from C. odorata leaves (p < 0.05). However, temperature and solvent/feed ratio was not significant. In addition, the interactions AB (irradiation time and microwave power) and AE (irradiation time and ethanol concentration) contributed greatly to the recovery yields.


2009 ◽  
Vol 17 (5) ◽  
pp. 28-33
Author(s):  
Richard T. Giberson ◽  
Mark A. Sanders

Microwave-assisted processing of biological specimens, from its inception, has been a methodology that promised time savings over conventional processing methods [1]. It has taken almost 30 years to define and control the significant variables associated with microwave processing [2]. Recent research combined with improved technology have helped in the identification and control of the experimental variables associated with microwave-assisted processing [2–7]. Stated simply they are: (1) constant sample temperature control in conjunction with continuous microwave irradiation [3–4], (2) control of wattage in the microwave device (the ability to control microwave power in the same manner as a dimmer switch controls a light) [2–5], and (3) energy uniformity in the microwave cavity [3–4].


Sign in / Sign up

Export Citation Format

Share Document