Contamination of the intake air of internal combustion engines of motor vehicles

2021 ◽  
Vol 70 (2) ◽  
pp. 35-64
Author(s):  
Sebastian Dominik Dziubak

The paper presents the composition of atmospheric air as a mixture of gases that make up the solid and variable components, and the definitions of air pollutants are referenced. Gaseous and solid pollutants (dust) of the atmospheric air have been defined. Dusts were divided according to various criteria and their properties were given. Exemplary courses of immission of the fraction of solid particles are given, indicating a strong dependence of the immission on the seasons, days of the week and day and night. The sources and characteristics of artificial and natural pollutants in the atmospheric air are presented. It has been shown that the main sources of anthropogenic pollution in addition to industry and the automotive industry. Cars are a source of gaseous and particulate pollutants PM, and they also emit pollution from brake and clutch lining wear, as well as from tire and road wear. The main sources of natural air pollution were discussed, including volcanic eruptions, fires in landfills, forests, steppes and sand storms, as well as mineral dust (road dust) carried from the ground by vehicles. The properties of road dust are discussed: chemical and fractional composition, density, dust concentration in the air. It has been shown that the two basic components of the dust, silica and corundum, whose share in dust reaches 95%, also have the highest hardness, which may have a decisive influence on the wear of engine components. Various valuesof dust concentration in the air were presented depending on the type and condition of the ground and the conditions of use of vehicles. Keywords: mechanical engineering, internal combustion engines, air pollution sources, road dust

Processes ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 465
Author(s):  
Ashraf Elfasakhany ◽  
Mishal Alsehli ◽  
Bahaa Saleh ◽  
Ayman A. Aly ◽  
Mohamed Bassuoni

Biomass is currently one of the world’s major renewable energy sources. Biomass in a powder form has been recently proposed as the most encouraging of biomass contours, especially because it burns like a gas. In the current study, biomass powder was examined, for the first time, as a direct solid fuel in internal combustion engines. The aim of the current study was to investigate modeling tools for simulation of biomass powder in combustion engines (CE). The biomass powder applied was in a micro-scale size with a typical irregular shape; the powder length was in the range of 75−5800 μm, and the diameter was in the range 30−1380 μm. Different mechanisms for biomass powder drying and devolatilization/gasification were proposed, including different schemes’ and mechanisms’ rate constants. A comparison between the proposed models and experiments was carried out and results showed good matching. Nevertheless, it is important that a biomass powder simulation addresses overlapping/complicated sub-process. During biomass powder combustion, tar was shown to be formed at a rate of 57 wt.%, and, accordingly, the formation and thermal decomposition of tar were modelled in the study, with the results demonstrating that the tar was formed and then disintegrated at temperatures between 700 and 1050 K. Through biomass powder combustion, moisture, tar, and gases were released, mostly from one lateral of particles, which caused ejection of the solid particles. These new phenomena were investigated experimentally and modeled as well. Results also showed that all the proposed models, along with their rate constants, activation energies, and other models’ parameters, were capable of reproducing the mass yields of gases, tar, and char at a wide range of working temperatures. The results showed that the gasification/devolatilization model 3 is somewhat simple and economical in the simulation/computation scheme, however, models 1 and 2 are rather computationally heavy and complicated.


2020 ◽  
Vol 221 ◽  
pp. 02006
Author(s):  
Irina Belinskaia ◽  
Rahim Zainetdinov ◽  
Konstantin Evdokimov

The problem of negative impact on the environment of motor transport is one of the most fundamental in the complex of global problems. The constant increase in the number of cars with internal combustion engines encourages the search for methods and ways to reduce the volume of negative impulses. The operation of heat engines is accompanied by significant emissions of gaseous harmful substances into the atmosphere, i.e. nitrogen oxides, carbon monoxide, hydrocarbons, as well as solid particles, including soot. The solution to this problem should be implemented within the framework of a systematic approach. To do this, it is necessary to combine the study of technical, economic, and organizational approaches to the organization of the exhaust gas disposal process. To date, there is a significant methodological base in the field of organizational and economic decisions. The article discusses various methods of cleaning exhaust gases of piston engines, their advantages and disadvantages are noted. The method of processing using ammonia is widely known. It is noted that a catalytic method for reducing nitrogen oxides using ammonia is quite economical. However, the optimal temperature range at which nitrogen oxides are reduced is rather narrow. To solve this problem, it is proposed to use the vortex effect in the exhaust system. The efficiency of using a vortex gas recirculation pipe is due to its significant influence on the thermal gasdynamic processes occurring in the exhaust system. Using the principles of non-equilibrium thermodynamics allows us to take into account dissipative processes when establishing the relationship of fuel and economic indicators of internal combustion engines with thermodynamic parameters. This significantly increases the accuracy of calculations and allows you to develop measures to reduce the level of negative impact on the environment.


Author(s):  
Adil S. Kadyrov ◽  
Bauyrzhan K. Sarsembekov ◽  
Aleksandr A. Ganyukov ◽  
Zhanara Z. Zhunusbekova ◽  
Kuanysh N. Alikarimov

The authors propose the use of ultrasonic radiation to clean the exhaust gases of internal combustion engines of the solid particles. An experimental stand and research results are presented, proving the possibility and efficiency of using the process of ultrasonic cleaning of exhaust gases due to the process of the solid particles coagulation. The authors received a corresponding patent, the efficiency of which has been proven by results of the conducted research.


Caused by the need to replace internal combustion engines (ICEs) with emissions of harmful substances into the atmospheric air, the search for technological alternatives led to the need to use electricity generated and sold from various, including renewable energy sources. Keywords alternative; electricity; hybridization; electric transport


2020 ◽  
Author(s):  
Aleksandr Barinov

The article considers the problem of the negative impact of the exhaust gases of diesel internal combustion engines on the environment and human health. The types of organization of the ignition process and the process of fuel combustion in a diesel engine are considered. The reasons for the occurrence of increased particulate matter in internal combustion engines in exhaust gases are also described. The main factors affecting the delay of ignition are given. The main stages of soot formation in diesel internal combustion engines are described. The influence of temperature distribution in the jets of injected fuel and the dependence of emissions on the coefficient of excess air are considered. As a result, the main conclusions are given on ensuring the reduction of solid particles in the exhaust gases of diesel engines by optimizing the combustion process.


Sign in / Sign up

Export Citation Format

Share Document