scholarly journals The Role of the Tropical Oceans on Global Climate During a Warm Period and a Major Climate Transition

Oceanography ◽  
2004 ◽  
Vol 17 (3) ◽  
pp. 32-41 ◽  
Author(s):  
Ana Christina Ravelo
2021 ◽  
pp. 1-9
Author(s):  
Feng Shi ◽  
Anmin Duan ◽  
Qiuzhen Yin ◽  
John T Bruun ◽  
Cunde Xiao ◽  
...  

Abstract The Qinghai–Tibetan Plateau and Arctic both have an important influence on global climate, but the correlation between climate variations in these two regions remains unclear. Here we reconstructed and compared the summer temperature anomalies over the past 1,120 yr (900–2019 CE) in the Qinghai–Tibetan Plateau and Arctic. The temperature correlation during the past millennium in these two regions has a distinct centennial variation caused by volcanic eruptions. Furthermore, the abrupt weak-to-strong transition in the temperature correlation during the sixteenth century could be analogous to this type of transition during the Modern Warm Period. The former was forced by volcanic eruptions, while the latter was controlled by changes in greenhouse gases. This implies that anthropogenic, as opposed to natural, forcing has acted to amplify the teleconnection between the Qinghai–Tibetan Plateau and Arctic during the Modern Warm Period.


2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Jiao Wang ◽  
Chenfei Zheng ◽  
Xiangqi Shao ◽  
Zhangjian Hu ◽  
Jianxin Li ◽  
...  

AbstractWith global climate change, plants are frequently being exposed to various stresses, such as pathogen attack, drought, and extreme temperatures. Transcription factors (TFs) play crucial roles in numerous plant biological processes; however, the functions of many tomato (Solanum lycopersicum L.) TFs that regulate plant responses to multiple stresses are largely unknown. Here, using an RNA-seq approach, we identified SlNAP1, a NAC TF-encoding gene, which was strongly induced by various stresses. By generating SlNAP1 transgenic lines and evaluating their responses to biotic and abiotic stresses in tomato, we found that SlNAP1-overexpressing plants showed significantly enhanced defense against two widespread bacterial diseases, leaf speck disease, caused by Pseudomonas syringae pv. tomato (Pst) DC3000, and root-borne bacterial wilt disease, caused by Ralstonia solanacearum. In addition, SlNAP1 overexpression dramatically improved drought tolerance in tomato. Although the SlNAP1-overexpressing plants were shorter than the wild-type plants during the early vegetative stage, eventually, their fruit yield increased by 10.7%. Analysis of different hormone contents revealed a reduced level of physiologically active gibberellins (GAs) and an increased level of salicylic acid (SA) and abscisic acid (ABA) in the SlNAP1-overexpressing plants. Moreover, EMSAs and ChIP-qPCR assays showed that SlNAP1 directly activated the transcription of multiple genes involved in GA deactivation and both SA and ABA biosynthesis. Our findings reveal that SlNAP1 is a positive regulator of the tomato defense response against multiple stresses and thus may be a potential breeding target for improving crop yield and stress resistance.


2021 ◽  
Author(s):  
Tomas Jonathan ◽  
Mike Bell ◽  
Helen Johnson ◽  
David Marshall

<p>The Atlantic Meridional Overturning Circulations (AMOC) is crucial to our global climate, transporting heat and nutrients around the globe. Detecting  potential climate change signals first requires a careful characterisation of inherent natural AMOC variability. Using a hierarchy of global coupled model  control runs (HadGEM-GC3.1, HighResMIP) we decompose the overturning circulation as the sum of (near surface) Ekman, (depth-dependent) bottom velocity, eastern and western boundary density components, as a function of latitude. This decomposition proves a useful low-dimensional characterisation of the full 3-D overturning circulation. In particular, the decomposition provides a means to investigate and quantify the constraints which boundary information imposes on the overturning, and the relative role of eastern versus western contributions on different timescales. </p><p>The basin-wide time-mean contribution of each boundary component to the expected streamfunction is investigated as a function of depth, latitude and spatial resolution. Regression modelling supplemented by Correlation Adjusted coRrelation (CAR) score diagnostics provide a natural ranking of the contributions of the various components in explaining the variability of the total streamfunction. Results reveal the dominant role of the bottom component, western boundary and Ekman components at short time-scales, and of boundary density components at decadal and longer timescales.</p>


2017 ◽  
Author(s):  
Amanda Frigola ◽  
Matthias Prange ◽  
Michael Schulz

Abstract. The Middle Miocene Climate Transition was characterized by major Antarctic ice-sheet expansion and global cooling during the interval ~ 15–13 Ma. Here we present two sets of boundary conditions for global general circulation models characterizing the periods before (Middle Miocene Climatic Optimum; MMCO) and after (Middle Miocene Glaciation; MMG) the transition. These boundary conditions include Middle Miocene global topography, bathymetry and vegetation. Additionally, Antarctic ice volume and geometry, sea-level and atmospheric CO2 concentration estimates for the MMCO and the MMG are reviewed. The boundary-condition files are available for use as input in a wide variety of global climate models and constitute a valuable tool for modeling studies with a focus on the Middle Miocene.


2012 ◽  
Vol 55 (spe) ◽  
pp. 9-29 ◽  
Author(s):  
Eduardo Viola ◽  
Matías Franchini ◽  
Thaís Lemos Ribeiro

In the last five years, climate change has been established as a central civilizational driver of our time. As a result of this development, the most diversified social processes - as well as the fields of science which study them - have had their dynamics altered. In International Relations, this double challenge could be explained as follows: 1) in empirical terms, climate change imposes a deepening of cooperation levels on the international community, considering the global common character of the atmosphere; and 2) to International Relations as a discipline, climate change demands from the scientific community a conceptual review of the categories designed to approach the development of global climate governance. The goal of this article is to discuss in both conceptual and empirical terms the structure of global climate change governance, through an exploratory research, aiming at identifying the key elements that allow understanding its dynamics. To do so, we rely on the concept of climate powers. This discussion is grounded in the following framework: we now live in an international system under conservative hegemony that is unable to properly respond to the problems of interdependence, among which - and mainly -, the climate issue.


2019 ◽  
Vol 10 (3) ◽  
pp. 379-395
Author(s):  
Marcela Cardoso Guilles Da Conceição ◽  
Renato de Aragão Ribeiro Rodrigues ◽  
Fernanda Reis Cordeiro ◽  
Fernando Vieira Cesário ◽  
Gracie Verde Selva ◽  
...  

The increase of greenhouse gases in the atmosphere raises the average temperature of the planet, triggering problems that threaten the survival of humans. Protecting the global climate from the effects of climate change is an essential condition for sustaining life. For this reason, governments, scientists, and society are joining forces to propose better solutions that could well-rounded environmentally, social and economic development relationships. International climate change negotiations involve many countries in establishing strategies to mitigate the problem. Therefore, understanding international negotiation processes and how ratified agreements impact a country is of fundamental importance. The purpose of this paper is to systematize information about how climate negotiations have progressed, detailing key moments and results, analyzing the role that Brazil played in the course of these negotiations and the country’s future perspectives.


2019 ◽  
Author(s):  
Atte Harjanne ◽  
Janne M. Korhonen

Renewable energy is a widely used term that describes certain types of energy production. In politics, business and academia, renewable energy is often framed as the key solution to the global climate challenge. We, however, argue that the concept of renewable energy is problematic and should be abandoned in favor of more unambiguous conceptualization.Building on the theoretical literature on framing and based on document analysis, case examples and statistical data, we discuss how renewable energy is framed and has come to be a central energy policy concept and analyze how its use has affected the way energy policy is debated and conducted. We demonstrate the key problems the concept of renewable energy has in terms of sustainability, incoherence, policy impacts, bait-and-switch tactics and generally misleading nature. After analyzing these issues, we discuss alternative conceptualizations and present our model of categorizing energy production according to carbon content and combustion.The paper does not intend to criticize or promote any specific form of energy production, but instead discusses the role of institutional conceptualization in energy policy.


2018 ◽  
Author(s):  
Shuming Jia ◽  
Zhengshi Wang ◽  
Shumin Li

Abstract. Drifting snow, a common two-phase flow movement in high and cold areas, contributes greatly to the mass and energy balance of glacier and ice sheets and further affects the global climate system. Mid-air collisions occur frequently in high-concentration snow flows; however, this mechanism is rarely considered in current models of drifting snow. In this work, a three-dimensional model of drifting snow with consideration of inter-particle collisions is established; this model enables the investigation of the role of a mid-air collision mechanism in openly drifting snow. It is found that the particle collision frequency increases with the particle concentration and friction velocity, and the blown snow with a mid-air collision effect produces more realistic transport fluxes since inter-particle collision can enhance the particle activity under the same condition. However, the snow saltation mass flux basically shows a cubic dependency with friction velocity, which distinguishes it from the quadratic dependence of blown sand movement. Moreover, the snow saltation flux is found to be largely sensitive to the particle size distribution since the suspension snow may restrain the saltation movement. This research could improve our understanding of the role of the mid-air collision mechanism in natural drifting snow.


Sign in / Sign up

Export Citation Format

Share Document