scholarly journals Gene Expression Patterns Associated with Peroxisome Proliferator-activated Receptor (PPAR) Signaling in the Longissimus dorsi of Hanwoo (Korean Cattle)

2015 ◽  
Vol 28 (8) ◽  
pp. 1075-1083 ◽  
Author(s):  
Dajeong Lim ◽  
Han-Ha Chai ◽  
Seung-Hwan Lee ◽  
Yong-Min Cho ◽  
Jung-Woo Choi ◽  
...  
2014 ◽  
Vol 115 (suppl_1) ◽  
Author(s):  
Michael A Burke ◽  
Stephen Chang ◽  
Danos C Christodoulou ◽  
Joshua M Gorham ◽  
Hiroko Wakimoto ◽  
...  

The complex molecular networks underpinning DCM remain poorly understood. To study distinct pathways and networks in the longitudinal development of DCM we performed RNAseq on LV tissue from mice carrying a human DCM mutation in phospholamban (PLN R9C/+ ) before phenotype onset (pre-DCM), with DCM, and during overt heart failure (HF), and also on isolated myocytes and non-myocytes from DCM hearts. PLN R9C/+ mice show progressive fibrosis (20% vs. 1% control, p=6x10 −33 ; n=3) associated with proliferation of cardiac non-myocytes (33% increase over control, p=6x10 −4 ; n=3). Consistent with this, cardiac non-myocytes have upregulated gene expression and pathways, while these are generally downregulated in myocytes. Non-myocytes were enriched in fibrosis, inflammation, and cell remodeling pathways, from pre-DCM to HF. In contrast, myocytes were enriched for metabolic pathways only with overt DCM and HF. Myocytes showed profound derangement of oxidative phosphorylation with DCM (p=2.5x10 −41 ; 44% (53/120) of pathway genes downregulated), suggesting mitochondrial dysfunction. Additionally, we detected probable inhibition of peroxisome proliferator-activated receptor (PPAR) signaling by diminished expression of pathway genes (Figure). DCM and hypertrophic remodeling was compared using RNAseq of a mouse model of HCM; similar patterns of fibrosis with myocyte metabolic dysregulation were evident despite unique differential gene expression patterns between models. DCM caused by PLN R9C/+ is associated with early non-myocyte proliferation and later myocyte metabolic derangement possibly governed by altered PPAR signaling, and is common to DCM and HCM.


2020 ◽  
Vol 4 (8) ◽  
Author(s):  
Mariana Buranelo Egea ◽  
Gavin Pierce ◽  
Alexandra R Becraft ◽  
Marlena Sturm ◽  
Wesley Yu ◽  
...  

ABSTRACT Background Consumption of watermelon has been associated with beneficial effects on metabolism, including reductions in systolic blood pressure, improved fasting blood glucose levels, and changes in hepatic metabolite accumulation. Objectives In the present study, we investigated the impact of consumption of watermelon flesh (WF), watermelon rind (WR), and watermelon skin (WS) on hepatic gene expression patterns in an obesogenic mouse model. Methods Hepatic RNA was isolated and RNA sequencing was performed following a 10-week feeding trial during which C57BL/6 J mice were provided either a low-fat diet (LF), high-fat diet (HF; controls), or HF plus either WS, WR, or WF. Bioinformatic approaches were used to determine changes in the canonical pathways and gene expression levels for lipid- and xenobiotic-regulating nuclear hormone receptors and other related transcription factors, including the aryl hydrocarbon receptor (AhR), constitutive androstane receptor (CAR), farnesyl X receptor, peroxisome proliferator–activated receptor alpha (PPARα), peroxisome proliferator–activated receptor gamma, liver X receptor, pregnane X receptor, and nuclear factor erythroid 2–related factor 2. Results There were 9394 genes that had unchanged expression levels between all 5 diet groups, and 247, 58, and 34 genes were uniquely expressed in the WF, WR, and WS groups, respectively. The relative levels of mRNAs regulated by AhR, CAR, and PPARα were upregulated in mice in the WF group, as compared to the HF control mice; in comparison, mRNAs regulated mainly by CAR were upregulated in mice in the WR and WS groups, compared to those in the HF control group. Conclusions At modest levels of intake reflective of typical human consumption, mice in the WF, WS, and WR groups exhibited hepatic gene expression profiles that were altered when compared to mice in the HF control group. Several of these changes involve genes regulated by ligand-responsive transcription factors implicated in xenobiotic and lipid metabolisms, suggesting that the modulation of these transcription factors occurred in response to the consumption of WS, WR, and WF. Some of these changes are likely due to nuclear hormone receptor–mediated changes involved in lipid and xenobiotic metabolisms.


2013 ◽  
Vol 95 (2-3) ◽  
pp. 78-88 ◽  
Author(s):  
KAN HE ◽  
ZHEN WANG ◽  
QISHAN WANG ◽  
YUCHUN PAN

SummaryGene expression profiling of peroxisome-proliferator-activated receptor α (PPARα) has been used in several studies, but there were no consistent results on gene expression patterns involved in PPARα activation in genome-wide due to different sample sizes or platforms. Here, we employed two published microarray datasets both PPARα dependent in mouse liver and applied meta-analysis on them to increase the power of the identification of differentially expressed genes and significantly enriched pathways. As a result, we have improved the concordance in identifying many biological mechanisms involved in PPARα activation. We suggest that our analysis not only leads to more identified genes by combining datasets from different resources together, but also provides some novel hepatic tissue-specific marker genes related to PPARα according to our re-analysis.


2003 ◽  
Vol 31 (2) ◽  
pp. 291-303 ◽  
Author(s):  
JM Weitzel ◽  
S Hamann ◽  
M Jauk ◽  
M Lacey ◽  
A Filbry ◽  
...  

Thyroid hormone (T3) is essential for normal development, differentiation and metabolic balance. We have performed DNA microarray experiments using hepatic RNA from hypothyroid and T3-treated hypothyroid rats in order to characterize T3-induced gene expression patterns after various time points (6, 24 and 48 h after the administration of the hormone). Sixty-two of 4608 different genes displayed a reproducible T3-response, and cluster analysis divided these differentially regulated genes into six expression patterns. Thirty-six genes were not significantly regulated within the first 24 h. Transient transfection experiments of eight late-induced gene promoters failed to detect a thyroid hormone response element within their regulatory elements, suggesting an indirect activation mechanism(s). In search for an intermediate factor of T3 action, we examined whether various rather ubiquitous transcription factors, peroxisome proliferator-activated receptors (PPARs) and coactivators of the PPARgamma coactivator 1 family (PGC-1) are regulated by T3. Only PPARgamma and PERC/PGC-1beta exhibit a significant T3-response within the first 6 h after treatment, identifying these factors as candidate components for mediating the late-induced expression pattern. Regulation of early-induced genes within the first 6 h after administration of T3 on transcript levels correlates with altered protein levels after 24 and 48 h in vivo.


2015 ◽  
Vol 25 (4) ◽  
pp. 376-384
Author(s):  
Kyung Ho Han ◽  
Eun Young Choi ◽  
Yeon-Hee Hong ◽  
Jae Yeong Kim ◽  
In Soon Choi ◽  
...  

2021 ◽  
Vol 15 ◽  
Author(s):  
Naoki Iwasa ◽  
Takeshi K. Matsui ◽  
Naohiko Iguchi ◽  
Kaoru Kinugawa ◽  
Naritaka Morikawa ◽  
...  

Ischemic stroke is one of the most common neurological diseases. However, the impact of ischemic stroke on human cerebral tissue remains largely unknown due to a lack of ischemic human brain samples. In this study, we applied cerebral organoids derived from human induced pluripotent stem cells to evaluate the effect of oxygen-glucose deprivation/reoxygenation (OGD/R). Pathway analysis showed the relationships between vitamin digestion and absorption, fat digestion and absorption, peroxisome proliferator-activated receptor (PPAR) signaling pathway, and complement and coagulation cascades. Combinational verification with transcriptome and gene expression analysis of different cell types revealed fatty acids-related PPAR signaling pathway and pyruvate kinase isoform M2 (PKM2) as key markers of neuronal cells in response to OGD/R. These findings suggest that, although there remain some limitations to be improved, our ischemic stroke model using human cerebral organoids would be a potentially useful tool when combined with other conventional two-dimensional (2D) mono-culture systems.


Pneumologie ◽  
2018 ◽  
Vol 72 (S 01) ◽  
pp. S8-S9
Author(s):  
M Bauer ◽  
H Kirsten ◽  
E Grunow ◽  
P Ahnert ◽  
M Kiehntopf ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document