BUCKLE PROPAGATION OF SANDWICH PIPES UNDER EXTERNAL PRESSURE

Author(s):  
C An ◽  
B Q Liu ◽  
T T Li ◽  
G M Fu ◽  
M L Duan

Buckle propagation of local collapse appearing in the damaged pipes is one of the failure modes that are of particular interest for deepwater application. The local collapse can propagate along the pipeline for long distances in both directions when the external pressure magnitude is up to the propagation pressure. In this paper, the buckle propagation pressure of sandwich pipes (SP) with different material properties and geometric characteristics is investigated by numerical simulation using Python programming language based on general finite element code. The results of the pressure history data obtained are verified by comparing those published previously. The effect of material properties, geometric characteristics and adhesion conditions on the propagation pressure are analyzed.

2020 ◽  
Vol 162 (A1) ◽  
Author(s):  
C An ◽  
B Q Liu ◽  
T T Li ◽  
G M Fu ◽  
M L Duan

Buckle propagation of local collapse appearing in the damaged pipes is one of the failure modes that are of particular interest for deepwater application. The local collapse can propagate along the pipeline for long distances in both directions when the external pressure magnitude is up to the propagation pressure. In this paper, the buckle propagation pressure of sandwich pipes (SP) with different material properties and geometric characteristics is investigated by numerical simulation using Python programming language based on general finite element code. The results of the pressure history data obtained are verified by comparing those published previously. The effect of material properties, geometric characteristics and adhesion conditions on the propagation pressure are analyzed.


2020 ◽  
Vol 65 (1) ◽  
pp. 96-104
Author(s):  
Tatian-Cristian Mălin

We introduce in this paper an application developed in the Python programming language that can be used to generate digital signals with known frequencies and amplitudes. These digital signals, since have known parameters, can be used to create benchmarks for test and numerical simulation.


Author(s):  
Chen An ◽  
Menglan Duan ◽  
Segen F. Estefen

Sandwich pipes (SP) can be an effective solution for ultra-deepwater submarine pipelines, combining high structural resistance with thermal insulation. Most research work on this subject has been conducted at the subsea technology laboratory (LTS) of COPPE/UFRJ, with the aim of developing qualified pipes to transport deepwater oil and gas, especially for the pre-salt reservoirs at Offshore Brazil. This article reviewed most of the research done in recent years (2002–2012) on the buckling, collapse and buckle propagation of SP, which emphasized on the development of theoretical, experimental and numerical methods adopted to analyze such structural behavior of SP with different core materials. The main mechanical and thermal properties of the previously considered core materials were also given, together with the elastoplastic constitutive model for each material. The experimental and numerical results of collapse and buckle propagation under external pressure for SP were summarized. A general discussion of the mechanical failure modes of SP under external pressure was also provided. Besides, some suggestions for future work on collapse behavior and buckle propagation of SP were given.


Author(s):  
Enrico Torselletti ◽  
Luigino Vitali ◽  
Erik Levold ◽  
Kim J. Mo̸rk

The development of deep water gas fields using trunklines to carry the gas to the markets is sometime limited by the feasibility/economics of the construction phase. In particular there is a market for using S-lay vessels in water depth larger than 1000m. The S-lay feasibility depends on the applicable tension at the tensioner which is a function of water depth, stinger length and stinger curvature (for given stinger length by its curvature). This means that, without major vessel up-grading and to avoid too long stingers that are prone to damages caused by environmental loads, the application of larger stinger curvatures than presently allowed by current regulations/state of the art is needed. The work presented in this paper is a result of the project “Development of a Design Guideline for Submarine Pipeline Installation” sponsored by STATOIL and HYDRO. The technical activities are performed in co-operation by DNV, STATOIL and SNAMPROGETTI. The scope of the project is to produce a LRFD (Load Resistant Factor Design) design guideline to be used in the definition and application of design criteria for the laying phase e.g. to S and J-lay methods/equipment. The guideline covers D/t from 15 to 45 and applied strains over the overbend in excess of 0.5%. This paper addresses the failure modes relevant for combined high curvatures/strains, axial, external pressure and local forces due to roller over the stinger of an S-lay vessel and to sea bottom contacts, particularly: • Residual pipe ovality after laying, • Maximum strain and bending moment capacity. Analytical equations are proposed in accordance with DNV OS F101 philosophy and design format.


2011 ◽  
Vol 378-379 ◽  
pp. 15-18
Author(s):  
Yong Bin Zhang ◽  
Zheng Zhao Liang ◽  
Shi Bin Tang ◽  
Jing Hui Jia

In this paper, a ring shaped numerical specimen is used to studying the failure process in brittle materials. The ring specimen is subjected to a compressive diametral load and contains two angled central cracks. Numerical modeling in this study is performed. It is shown that the obtained numerical results are in a very good agreement with the experiments. Effect of the crack orientation angle on the failure modes and loading-displace responses is discussed. In the range of 0°~40°, the fracture paths are curvilinear forms starting from the tip of pre-existing cracks and grow towards the loading points. For the crack orientation angle 90°, vertical fractures will split the specimen and the horizontal cracks do not influence the fracture process.


2007 ◽  
Vol 558-559 ◽  
pp. 1201-1206 ◽  
Author(s):  
Mihaela Teodorescu ◽  
Patrice Lasne ◽  
Roland E. Logé

The present work concerns the simulation of metallurgical evolutions in 3D multi-pass forming processes. In this context, the analyzed problem is twofold. One point refers to the management of the microstructure evolution during each pass or each inter-pass period and the other point concerns the management of the multi-pass aspects (different grain categories, data structure). In this framework, a model is developed and deals with both aspects. The model considers the microstructure as a composite made of a given (discretized) number of phases which have their own specific properties. The grain size distribution and the recrystallized volume fraction distribution of the different phases evolve continuously during a pass or inter-pass period. With this approach it is possible to deal with the heterogeneity of the microstructure and its evolution in multi-pass conditions. Both dynamic and static recrystallization phenomena are taken into account, with typical Avrami-type equations. The present model is implemented in the Finite Element code FORGE2005®. 3D numerical simulation results for a multi-pass process are presented.


2011 ◽  
Vol 279 ◽  
pp. 181-185 ◽  
Author(s):  
Guo Hua Zhao ◽  
Qing Lian Shu ◽  
Bo Sheng Huang

This paper proposes a material model of AS4/PEEK, a typical thermoplastic composite material, for the general purpose finite element code—ANSYS, which can be used to predict the mechanical behavior of AS4/PEEK composite structures. The computational result using this model has a good agreement with the test result. This investigation can lay the foundation for the numerical simulation of thermoplastic composite structures.


2021 ◽  
Vol 12 (2) ◽  
pp. 52-65
Author(s):  
Eviatar Rosenberg ◽  
Dima Alberg

A significant part of pension savings is in the capital market and exposed to market volatility. The COVID-19 pandemic crisis, like the previous crises, damaged the gains achieved in those funds. This paper presents a development of open-source finance system for stocks backtesting trade strategies. The development will be operated by the Python programming language and will implement application user interface. The system will import historical data of stocks from financial web and will produce charts for analysis of the trends in stocks price. Based on technical analysis, it will run trading strategies which will be defined by the user. The system will output the trade orders that should have been executed in retrospect and concluding charts to present the profit and loss that would occur to evaluate the performance of the strategy.


Sign in / Sign up

Export Citation Format

Share Document