Impact of Wireless Channel Parameters on Quality of Video Streaming

1970 ◽  
Vol 108 (2) ◽  
pp. 27-30 ◽  
Author(s):  
S. Paulikas ◽  
P. Sargautis ◽  
V. Banevicius

The problem of estimation of video quality obtained by end-user for mobile video streaming is addressed. Widely spreading mobile communication systems and increasing data transmission rates expand variety of multimedia services. One of such services is video streaming. So it is important to assess quality of this service. Consumers of video streaming are humans, and quality assessment must account human perception characteristics. Existing methods for user experienced video quality estimation as quality metrics usually usebit-error rate that has low correlation with by human perceived video quality. More advanced methods usually require too much processing power that cannot be obtained in handled mobile devices or intrusion into device firmware and/or hardware to obtain required data. However, recent research shows that channels throughput dedicated to some service (e.g. video streaming) can be tied to QoS perceived by an end-user indicator. This paper presents a research on impact of wireless channel parameters such as throughput and jitter on quality of video streaming. These wireless channel parameters can be easily obtained by monitoring IP level data streams in end-user’s device by fairly simple software agent for indication of video streaming QoS. Ill. 5, bibl. 10 (in English; abstracts in English and Lithuanian).http://dx.doi.org/10.5755/j01.eee.108.2.138

Entropy ◽  
2021 ◽  
Vol 23 (8) ◽  
pp. 948
Author(s):  
Carlos Eduardo Maffini Santos ◽  
Carlos Alexandre Gouvea da Silva ◽  
Carlos Marcelo Pedroso

Quality of service (QoS) requirements for live streaming are most required for video-on-demand (VoD), where they are more sensitive to variations in delay, jitter, and packet loss. Dynamic Adaptive Streaming over HTTP (DASH) is the most popular technology for live streaming and VoD, where it has been massively deployed on the Internet. DASH is an over-the-top application using unmanaged networks to distribute content with the best possible quality. Widely, it uses large reception buffers in order to keep a seamless playback for VoD applications. However, the use of large buffers in live streaming services is not allowed because of the induced delay. Hence, network congestion caused by insufficient queues could decrease the user-perceived video quality. Active Queue Management (AQM) arises as an alternative to control the congestion in a router’s queue, pressing the TCP traffic sources to reduce their transmission rate when it detects incipient congestion. As a consequence, the DASH client tends to decrease the quality of the streamed video. In this article, we evaluate the performance of recent AQM strategies for real-time adaptive video streaming and propose a new AQM algorithm using Long Short-Term Memory (LSTM) neural networks to improve the user-perceived video quality. The LSTM forecast the trend of queue delay to allow earlier packet discard in order to avoid the network congestion. The results show that the proposed method outperforms the competing AQM algorithms, mainly in scenarios where there are congested networks.


Author(s):  
Claudio Estevez

Cloud computing is consistently proving to be the dominant architecture of the future, and mobile technology is the catalyst. By having the processing power and storage remotely accessible, the main focus of the terminal is now related to connectivity and user-interface. The success of cloud-based applications greatly depends on the throughput experienced by the end user, which is why transport protocols play a key role in mobile cloud computing. This chapter discusses the main issues encountered in cloud networks that affect connection-oriented transport protocols. These issues include, but are not limited to, large delay connections, bandwidth variations, power consumption, and high segment loss rates. To reduce these adverse effects, a set of proposed solutions are presented; furthermore, the advantages and disadvantages are discussed. Finally, suggestions are made for future mobile cloud computing transport-layer designs that address different aspects of the network, such as transparency, congestion-intensity estimation, and quality-of-service integration.


Author(s):  
Monalisa Ghosh ◽  
Chetna Singhal

Video streaming services top the internet traffic surging forward a competitive environment to impart best quality of experience (QoE) to the users. The standard codecs utilized in video transmission systems eliminate the spatiotemporal redundancies in order to decrease the bandwidth requirement. This may adversely affect the perceptual quality of videos. To rate a video quality both subjective and objective parameters can be used. So, it is essential to construct frameworks which will measure integrity of video just like humans. This chapter focuses on application of machine learning to evaluate the QoE without requiring human efforts with higher accuracy of 86% and 91% employing the linear and support vector regression respectively. Machine learning model is developed to forecast the subjective quality of H.264 videos obtained after streaming through wireless networks from the subjective scores.


Author(s):  
Árpád Huszák

In this chapter we present a novel selective retransmission scheme, based on congestion control algorithm. Our method is efficient in narrowband networks for multimedia applications, which demand higher bandwidth. Multimedia applications are becoming increasingly popular in IP networks, while in mobile networks the limited bandwidth and the higher error rate arise in spite of its popularity. These are restraining factors for mobile clients using multimedia applications such as video streaming. In some conditions the retransmission of lost and corrupted packets should increase the quality of the multimedia service, but these retransmissions should be enabled only if the network is not in congested state. Otherwise the retransmitted packet will intensify the congestion and it will have negative effect on the audio/video quality. Our proposed mechanism selectively retransmits the corrupted packets based on the actual video bit rate and the TCP-Friendly Rate Control (TFRC), which is integrated to the preferred DCCP transport protocol.


2019 ◽  
Vol 9 (11) ◽  
pp. 2297
Author(s):  
Kyeongseon Kim ◽  
Dohyun Kwon ◽  
Joongheon Kim ◽  
Aziz Mohaisen

As the demand for over-the-top and online streaming services exponentially increases, many techniques for Quality of Experience (QoE) provisioning have been studied. Users can take actions (e.g., skipping) while streaming a video. Therefore, we should consider the viewing pattern of users rather than the network condition or video quality. In this context, we propose a proactive content-loading algorithm for improving per-user personalized preferences using multinomial softmax classification. Based on experimental results, the proposed algorithm has a personalized per-user content waiting time that is significantly lower than that of competing algorithms.


2008 ◽  
Vol 2008 ◽  
pp. 1-21
Author(s):  
Monchai Lertsutthiwong ◽  
Thinh Nguyen ◽  
Alan Fern

Limited bandwidth and high packet loss rate pose a serious challenge for video streaming applications over wireless networks. Even when packet loss is not present, the bandwidth fluctuation, as a result of an arbitrary number of active flows in an IEEE 802.11 network, can significantly degrade the video quality. This paper aims to enhance the quality of video streaming applications in wireless home networks via a joint optimization of video layer-allocation technique, admission control algorithm, and medium access control (MAC) protocol. Using an Aloha-like MAC protocol, we propose a novel admission control framework, which can be viewed as an optimization problem that maximizes the average quality of admitted videos, given a specified minimum video quality for each flow. We present some hardness results for the optimization problem under various conditions and propose some heuristic algorithms for finding a good solution. In particular, we show that a simple greedy layer-allocation algorithm can perform reasonably well, although it is typically not optimal. Consequently, we present a more expensive heuristic algorithm that guarantees to approximate the optimal solution within a constant factor. Simulation results demonstrate that our proposed framework can improve the video quality up to 26% as compared to those of the existing approaches.


2015 ◽  
Vol 76 (12) ◽  
Author(s):  
Mohd Fitri Ramli ◽  
Latifah Munirah Kamarudin ◽  
David Lorater Ndzi ◽  
Azizi Harun ◽  
Jamie Siregar Cynthia Turner ◽  
...  

This paper presents the study of video streaming over wireless channel based on experimental measurements in the presence of fading caused by the physical environmental. The emulation of video streaming file through wireless channel is measured using IxChariot software from Ixia. The obtained emulation of signal quality from the video streaming file was measured in terms of network throughput, RSSI and packet loss. The results show the credibility of wireless network for streaming video file in agricultural area. The statistical results show that there is significant negative effect of physical environmental condition on wireless video streaming and received video quality.


Author(s):  
Emad Abdullah Danish ◽  
Mazin I. Alshamrani

Research in network resource utilisation introduced several techniques for more efficient power and bandwidth consumption. The majority of these techniques, however, were based on Quality of Service (QoS) and network parameters. Therefore, in this study a different approach is taken to investigate the possibility of a more efficient resource utilisation if resources are distributed based on users' Quality of Experience (QoE), in the context of 3D video transmission over WiMAX access networks. In particular, this study suggests a QoE-driven technique to identify the operational regions (bounds) for Modulation and Coding Schemes (MCS). A mobile 3D video transmission is simulated, through which the correlation between receiver's Signal-to-Noise Ratio (SNR) and perceived video quality is identified. The main conclusions drawn from the study demonstrate that a considerable saving in signal power and bandwidth can be achieved in comparison to QoS-based techniques.


Author(s):  
Ping-Cheng Yeh ◽  
Hung-Yun Hsieh ◽  
Zhung-Han Wu ◽  
Yen-Chi Lee ◽  
Chun-Cheng Chiang ◽  
...  

Due to the time-varying nature of wireless channels and the Internet backbone traffic, it is a challenging task to maintain the quality of wireless multimedia streaming throughout the transmission. An effective solution is to adapt the codec setting based on the wireless channel condition or the Internet backbone state. In this chapter, we present three cross-layer codec adaptation algorithms that adjust the codec setting in real-time based on media access control frame error rate, received signal strength indication, and path bandwidth respectively. Results show that the algorithms are effective in achieving good video quality for wireless multimedia streaming over wireless links.


Sign in / Sign up

Export Citation Format

Share Document