scholarly journals High Temperature Tribological Behavior of Borocarburized Layer on Q235 Steel

2021 ◽  
Vol 27 (1) ◽  
pp. 42-49
Author(s):  
Zhengang YANG ◽  
Wenping LIANG ◽  
Yanlin JIA ◽  
Qiang MIAO ◽  
Zheng DING ◽  
...  

A borocarburized layer was successfully fabricated on the surface of Q235 low-carbon steel via double glow treatment to improve the wear resistance at elevated temperature. The phase composition and microstructure of borocarburized layer were investigated by XRD and SEM. The microhardness of borocarburized layer from the surface to the substrate were detected. And the tribological behaviors of borocarburized layer and substrate were investigated under the dry-sliding against ZrO2 ball at three temperatures. The results indicate that the borocarburized layer consists of an outermost boride layer and a transition layer of carburized layer. The boride layer with main phase of Fe2B has a high hardness around 1700 HV, and the hardness of transition layer with main phase of Fe5C3 is around 600 HV. The novel gradient structure of an outermost boride layer and inner carburized layer is design in this research decreases the hardness mismatch of coating to prevent the boride layer peeling off. The friction coefficient and specific wear rate of borocarburized layer are much lower than that of substrate at the same temperature. In addition, the wear mechanism of substrate is mainly fatigue wear and slightly adhesive wear at 20℃. When the wear test performs at 200℃, the substrate wear mechanism is adhesive wear and fatigue wear. The wear mechanism of borocarburized layer is main abrasive wear at 20℃ and 200℃. And the wear mechanism of both substrate and borocarburized layer are main oxidation wear and adhesive wear at 500℃. The borocarburized layer effectively improves the wear resistance of low carbon steel due to the higher hardness and great thermal stability at high temperature.

2007 ◽  
Vol 345-346 ◽  
pp. 641-644 ◽  
Author(s):  
Jee Hoon Ahn ◽  
Eun Pil Song ◽  
Sung Hak Lee ◽  
Nack J. Kim

Wear resistance of Al2O3-8wt.%TiO2 coatings plasma-sprayed using nanopowders was investigated. Four types of nanostructured Al2O3-8wt.%TiO2 powders were plasma-sprayed on a low-carbon steel substrate by using different critical plasma spray parameters (CPSP). The coatings consisted of completely melted and partially melted regions. The hardness of the coatings increased with increasing CPSP, while the wear resistance was the highest for the coating sprayed with the lowest CPSP. The main wear mechanism was a delamination mode in the coating sprayed with the high CPSP, but was changed to an abrasive mode in the coating sprayed with the low CPSP. According to this change in the wear mechanism, the wear resistance was the best in the coating sprayed with lowest CPSP, while its hardness was lowest.


Alloy Digest ◽  
1969 ◽  
Vol 18 (10) ◽  

Abstract USS 1/2% Cr-1/2% Mo is a low-alloy low-carbon steel recommended for use in steam service to reduce susceptibility to graphitization up to 950 F. This datasheet provides information on composition, physical properties, elasticity, and tensile properties as well as fracture toughness and creep. It also includes information on high temperature performance as well as forming, heat treating, machining, and joining. Filing Code: SA-245. Producer or source: United States Steel Corporation.


2019 ◽  
Vol 813 ◽  
pp. 159-164
Author(s):  
Carlos Alberto Souto ◽  
Gustavo Faria Melo da Silva ◽  
Laura Angelica Ardila Rodriguez ◽  
Aline C. de Oliveira ◽  
Kátia Regina Cardoso

Coatings with high entropy alloys of the AlCoCrFeNiV system were obtained by selective laser melting on low carbon steel substrates. The effect of the variation of the Fe and V contents as well as the laser processing parameters in the development of the coating were evaluated. The coatings were obtained from the simple powder mixtures of the high purity elemental components in a planetary ball mill. The coatings were obtained by using CO2 laser with a power of 100 W, diameter of 0.16 mm, and scan speed varying from 3 to 12 mm/s. Phase constituents, microstructure and hardness were investigated by XRD, SEM, and microhardness tester, respectively. Wear resistance measurements were carried out by the micro-abrasion method using ball-cratering tests. The coatings presented good adhesion to the substrate and high hardness, of the order of 480 to 650 HV. Most homogeneous coating with nominal composition was obtained by using the higher scan speed, 12 mm/s. Vanadium addition increased hardness and gave rise to a high entropy alloy coating composed by BCC solid solutions. Ball cratering tests conducted on HEA layer showing improvement of material wear resistance, when compared to base substrate, decreasing up to 88% its wear rate, from 1.91x10-6 mm3/Nmm to 0.23x10-6 mm3/Nmm.


2010 ◽  
Vol 34-35 ◽  
pp. 1338-1342
Author(s):  
Zheng Guan Ni

through super-hard wear-resistant surface electrode surfacing D707 in Low-carbon steel. We have analysis the effect of welding process parameters and post-weld heat treatment process on low carbon steel surface hardness of cladding layer. The experimental results show that: after quenching hardness value no significant change; But after annealing the hardness value decreased and after annealing the crystal grain of the underlying tissues uniformization become tiny. micro-hardness testing is carried out in the weld cross-section, we have find out that from the base metal to the cladding layer the surface hardness values is getting higher and higher, while the indentation is getting smaller and smaller. Because hardness is a measure of wear resistance materials, thus it can indirectly show that when low-carbon steel surface electrode in the super-hard wear-resistant surfacing welding layer, it can improve the surface hardness of low carbon steel and improve wear resistance of low carbon steel surface.


Coatings ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1038
Author(s):  
Sergey N. Grigoriev ◽  
Marina A. Volosova ◽  
Sergey V. Fedorov ◽  
Mikhail Mosyanov

The primary purpose of this work was to study the effectiveness of using diamond-like coatings (DLC) to increase the wear resistance of carbide end mills and improve the surface quality of the processed part when milling aluminum alloy and low-carbon steel. The functional role of forming an adhesive sublayer based on (CrAlSi)N immediately before the application of the external DLC film by plasma-enhanced chemical vapor deposition (PECVD) technology in the composition of a multicomponent gas mixture containing tetramethylsilane was established in the article. The article shows the degree of influence of the adhesive sublayer on important physical, mechanical, and structural characteristics of DLCs (hardness, modulus of elasticity, index of plasticity, and others). A quantitative assessment of the effect of single-layer DLCs and double-layer (CrAlSi)N/DLCs on the wear rate of end mills during operation and the surface roughness of machined parts made of aluminum alloy AlCuMg2 and low-carbon steel 41Cr4 was performed.


2013 ◽  
Vol 232 ◽  
pp. 142-149 ◽  
Author(s):  
Bin Wang ◽  
Xiaoyue Jin ◽  
Wenbin Xue ◽  
Zhenglong Wu ◽  
Jiancheng Du ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document