scholarly journals Ultra Wideband RF Transceiver Design in CMOS Technology

Author(s):  
Lingli Xia ◽  
Changhui Hu ◽  
Patrick Chiang
2021 ◽  
Vol 110 ◽  
pp. 105006
Author(s):  
Marwa Mansour ◽  
Abdelhalim Zekry ◽  
Mohammed K. Ali ◽  
Heba Shawkey

2013 ◽  
Vol 3 (1) ◽  
Author(s):  
Apratim Roy ◽  
A. Rashid

AbstractThis paper presents a threshold decision circuit with an adjustable detection window designed in a 90-nm IBM CMOS technology. Together with an RF mixer, the decision Section realizes the circuit implementation of the back-end of a transmitted reference ultra wideband receiver, which is yet to be reported in literature. The proposed circuit is built on a differential amplifier core and avoids the use of integrator and sampling blocks, which reduces the device burden necessary for the architecture. Moreover, the detection window threshold of the design can be regulated by three independent factors defined by the circuit elements. The circuit is tested at an input data rate of 0.1∼2.0 Gbps and the core decision section consumes 9.14 mW from a 1.2-V bias supply (with a maximum capacity/Pdc ratio of 218.8 GHz/W). When compared against other reported decision blocks, the proposed detection circuit shows improved performance in terms of capacity and power requirement.


2018 ◽  
Vol 7 (3.6) ◽  
pp. 84
Author(s):  
N Malika Begum ◽  
W Yasmeen

This paper presents an Ultra-Wideband (UWB) 3-5 GHz Low Noise Amplifier (LNA) employing Chebyshev filter. The LNA has been designed using Cadence 0.18um CMOS technology. Proposed LNA achieves a minimum noise figure of 2.2dB, power gain of 9dB.The power consumption is 6.3mW from 1.8V power supply.  


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
K. Yousef ◽  
H. Jia ◽  
R. Pokharel ◽  
A. Allam ◽  
M. Ragab ◽  
...  

This paper presents the design of ultra-wideband low noise amplifier (UWB LNA). The proposed UWB LNA whose bandwidth extends from 2.5 GHz to 16 GHz is designed using a symmetric 3D RF integrated inductor. This UWB LNA has a gain of 11 ± 1.0 dB and a NF less than 3.3 dB. Good input and output impedance matching and good isolation are achieved over the operating frequency band. The proposed UWB LNA is driven from a 1.8 V supply. The UWB LNA is designed and simulated in standard TSMC 0.18 µm CMOS technology process.


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Ahmed Ragheb ◽  
Ghazal Fahmy ◽  
Iman Ashour ◽  
Abdel Hady Ammar

This paper presents a design of a reconfigurable low noise amplifier (LNA) for multiband orthogonal frequency division multiplexing (MB-OFDM) ultra wideband (UWB) receivers. The proposed design is divided into three stages; the first one is a common gate (CG) topology to provide the input matching over a wideband. The second stage is a programmable circuit to control the mode of operation. The third stage is a current reuse topology to improve the gain, flatness and consume lower power. The proposed LNA is designed using 0.18 μm CMOS technology. This LNA has been designed to operate in two subbands of MB-OFDM UWB, UWB mode-1 and mode-3, as a single or concurrent mode. The simulation results exhibit the power gain up to 17.35, 18, and 11 dB for mode-1, mode-3, and concurrent mode, respectively. The NF is 3.5, 3.9, and 6.5 and the input return loss is better than −12, −13.57, and −11 dB over mode-1, mode-3, and concurrent mode, respectively. This design consumes 4 mW supplied from 1.2 V.


Sign in / Sign up

Export Citation Format

Share Document