scholarly journals KSHV Paracrine Effects on Tumorigenesis

Author(s):  
Ramona Jochmann ◽  
Peter Lorenz ◽  
Priya Chudasama ◽  
Christian Zietz ◽  
Michael Strzl ◽  
...  
Keyword(s):  
Gut ◽  
2021 ◽  
pp. gutjnl-2020-321112
Author(s):  
Dror Kolodkin-Gal ◽  
Lior Roitman ◽  
Yossi Ovadya ◽  
Narmen Azazmeh ◽  
Benjamin Assouline ◽  
...  

ObjectiveCellular senescence limits tumourigenesis by blocking the proliferation of premalignant cells. Additionally, however, senescent cells can exert paracrine effects influencing tumour growth. Senescent cells are present in premalignant pancreatic intraepithelial neoplasia (PanIN) lesions, yet their effects on the disease are poorly characterised. It is currently unknown whether senolytic drugs, aimed at eliminating senescent cells from lesions, could be beneficial in blocking tumour development.DesignTo uncover the functions of senescent cells and their potential contribution to early pancreatic tumourigenesis, we isolated and characterised senescent cells from PanINs formed in a Kras-driven mouse model, and tested the consequences of their targeted elimination through senolytic treatment.ResultsWe found that senescent PanIN cells exert a tumour-promoting effect through expression of a proinflammatory signature that includes high Cox2 levels. Senolytic treatment with the Bcl2-family inhibitor ABT-737 eliminated Cox2-expressing senescent cells, and an intermittent short-duration treatment course dramatically reduced PanIN development and progression to pancreatic ductal adenocarcinoma.ConclusionsThese findings reveal that senescent PanIN cells support tumour growth and progression, and provide a first indication that elimination of senescent cells may be effective as preventive therapy for the progression of precancerous lesions.


Cells ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 730
Author(s):  
Biji Mathew ◽  
Leianne A. Torres ◽  
Lorea Gamboa Gamboa Acha ◽  
Sophie Tran ◽  
Alice Liu ◽  
...  

Cell replacement therapy using mesenchymal (MSC) and other stem cells has been evaluated for diabetic retinopathy and glaucoma. This approach has significant limitations, including few cells integrated, aberrant growth, and surgical complications. Mesenchymal Stem Cell Exosomes/Extracellular Vesicles (MSC EVs), which include exosomes and microvesicles, are an emerging alternative, promoting immunomodulation, repair, and regeneration by mediating MSC’s paracrine effects. For the clinical translation of EV therapy, it is important to determine the cellular destination and time course of EV uptake in the retina following administration. Here, we tested the cellular fate of EVs using in vivo rat retinas, ex vivo retinal explant, and primary retinal cells. Intravitreally administered fluorescent EVs were rapidly cleared from the vitreous. Retinal ganglion cells (RGCs) had maximal EV fluorescence at 14 days post administration, and microglia at 7 days. Both in vivo and in the explant model, most EVs were no deeper than the inner nuclear layer. Retinal astrocytes, microglia, and mixed neurons in vitro endocytosed EVs in a dose-dependent manner. Thus, our results indicate that intravitreal EVs are suited for the treatment of retinal diseases affecting the inner retina. Modification of the EV surface should be considered for maintaining EVs in the vitreous for prolonged delivery.


2011 ◽  
Vol 18 (6) ◽  
pp. R197-R211 ◽  
Author(s):  
Odelia Cooper ◽  
George Vlotides ◽  
Hidenori Fukuoka ◽  
Mark I Greene ◽  
Shlomo Melmed

The role of ErbB family in discreet pituitary functions is reviewed. Several ErbB receptor ligands, EGF, TGFα, and heregulin are differentially expressed in normal gonadotroph and lacto-somatotroph lineages, and other elements of the anterior pituitary. ErbB receptors, i.e. EGFR and ErbB2, are also localized to the anterior pituitary with preferential EGFR lactosomatotroph expression. EGF regulates CRH and ACTH secretion and corticotroph proliferation as well as exhibiting autocrine and paracrine effects on gonadotrophs and on lactosomatotroph proliferation, gene and protein expression, and hormonal secretion. EGF and EGFR are expressed in both functioning and non-functioning pituitary adenomas, with higher expression in more aggressive tumor subtypes. ErbB2 receptor is detected in all tumor subtypes, particularly in invasive tumors. ErbB tyrosine kinase inhibitors regulate hormonal secretion, cell morphology, and proliferation in lacto-somatotroph tumors, reflecting the emerging application of targeted pituitary therapeutics.


2007 ◽  
Vol 11 (5) ◽  
pp. 1087-1100 ◽  
Author(s):  
Lucia Formigli ◽  
Avio-Maria Perna ◽  
Elisabetta Meacci ◽  
Lorenzo Cinci ◽  
Martina Margheri ◽  
...  

2021 ◽  
Vol 21 ◽  
Author(s):  
Fahim Rejanur Tasin ◽  
Debasish Halder ◽  
Chanchal Mandal

: Liver fibrosis is one of the leading causes for cirrhotic liver disease and the lack of therapies to treat fibrotic liver is a major concern. Liver fibrosis is mainly occurred by activation of hepatic stellate cells and some stem cell therapies had previously reported for treatment. However, due to some problems with cell-based treatment, a safe therapeutic agent is vehemently sought by the researchers. Extracellular vesicles are cell-derived nanoparticles that are employed in several therapeutic approaches, including fibrosis, for their ability to transfer specific molecules in the target cells. In this review the possibilities of extracellular vesicles to inactivate stellate cells are summarized and discussed. According to several studies, extracellular vesicles from different sources can either put beneficial or detrimental effects by regulating the activation of stellate cells. Therefore, targeting extracellular vesicles for maximizing or inhibiting their production is a potential approach for fibrotic liver treatment. Extracellular vesicles from different cells can also inactivate stellate cells by carrying out the paracrine effects of those cells, working as the agents. They are also implicated as smart carrier of anti-fibrotic molecules when their respective parent cells are engineered to produce specific stellate cell-regulating substances. A number of studies showed stellate cell activation can be regulated by up/downregulation of specific proteins, and extracellular vesicle-based therapies can be an effective move to exploit these mechanisms. In conclusion, EVs are advantageous nano-carriers with the potential to treat fibrotic liver by inactivating activated stellate cells by various mechanisms.


Sign in / Sign up

Export Citation Format

Share Document