scholarly journals Soil Behaviour Characteristics Under Applied Forces in Confined and Unconfined Spaces

Author(s):  
Seth I.
2006 ◽  
Author(s):  
William Porter ◽  
Sean Gallagher ◽  
Carrie Reinholtz ◽  
Janet Torma-Krajewski

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yijun Zheng ◽  
Mitchell K. L. Han ◽  
Renping Zhao ◽  
Johanna Blass ◽  
Jingnan Zhang ◽  
...  

AbstractProgress in our understanding of mechanotransduction events requires noninvasive methods for the manipulation of forces at molecular scale in physiological environments. Inspired by cellular mechanisms for force application (i.e. motor proteins pulling on cytoskeletal fibers), we present a unique molecular machine that can apply forces at cell-matrix and cell-cell junctions using light as an energy source. The key actuator is a light-driven rotatory molecular motor linked to polymer chains, which is intercalated between a membrane receptor and an engineered biointerface. The light-driven actuation of the molecular motor is converted in mechanical twisting of the entangled polymer chains, which will in turn effectively “pull” on engaged cell membrane receptors (e.g., integrins, T cell receptors) within the illuminated area. Applied forces have physiologically-relevant magnitude and occur at time scales within the relevant ranges for mechanotransduction at cell-friendly exposure conditions, as demonstrated in force-dependent focal adhesion maturation and T cell activation experiments. Our results reveal the potential of nanomotors for the manipulation of living cells at the molecular scale and demonstrate a functionality which at the moment cannot be achieved by other technologies for force application.


Geotechnics ◽  
2021 ◽  
Vol 1 (1) ◽  
pp. 95-127
Author(s):  
António Viana da Fonseca ◽  
Diana Cordeiro ◽  
Fausto Molina-Gómez

The critical state theory is a robust conceptual framework for the characterisation of soil behaviour. In the laboratory, triaxial tests are used to assess the critical state locus. In the last decades, the equipment and testing procedures for soil characterisation, within the critical state framework, have advanced to obtain accurate and reliable results. This review paper summarises and describes a series of recommended laboratory procedures to assess the critical state locus in cohesionless soils. For this purpose, results obtained in the laboratory from different cohesionless soils and triaxial equipment configurations are compiled, analysed and discussed in detail. The procedures presented in this paper reinforce the use of triaxial cells with lubricated end platens and an embedded connection piston into the top-cap, together with the verification of the full saturation condition and the measurement end-of-test water content—preferable using the soil freezing technique. The experimental evidence and comparison between equipment configurations provide relevant insights about the laboratory procedures for obtaining a reliable characterisation of the critical state locus of cohesionless geomaterials. All the procedures recommended herein can be easily implemented in academic and commercial geotechnical laboratories.


2021 ◽  
Vol 11 (9) ◽  
pp. 3824
Author(s):  
Ioana-Andreea Sioustis ◽  
Mihai Axinte ◽  
Marius Prelipceanu ◽  
Alexandra Martu ◽  
Diana-Cristala Kappenberg-Nitescu ◽  
...  

Finite element analysis studies have been of interest in the field of orthodontics and this is due to the ability to study the stress in the bone, periodontal ligament (PDL), teeth and the displacement in the bone by using this method. Our study aimed to present a method that determines the effect of applying orthodontic forces in bodily direction on a healthy and reduced periodontium and to demonstrate the utility of finite element analysis. Using the cone-beam computed tomography (CBCT) of a patient with a healthy and reduced periodontium, we modeled the geometric construction of the contour of the elements necessary for the study. Afterwards, we applied a force of 1 N and a force of 0.8 N in order to achieve bodily movement and to analyze the stress in the bone, in the periodontal ligament and the absolute displacement. The analysis of the applied forces showed that a minimal ligament thickness is correlated with the highest value of the maximum stress in the PDL and a decreased displacement. This confirms the results obtained in previous clinical practice, confirming the validity of the simulation. During orthodontic tooth movement, the morphology of the teeth and of the periodontium should be taken into account. The effect of orthodontic forces on a particular anatomy could be studied using FEA, a method that provides real data. This is necessary for proper treatment planning and its particularization depends on the patient’s particular situation.


2015 ◽  
Vol 773-774 ◽  
pp. 1438-1442 ◽  
Author(s):  
Siti Aimi Nadia Mohd Yusoff ◽  
I. Bakar ◽  
Devapriya Chitral Wijeyesekera ◽  
Adnan Zainorabidin ◽  
Aziman Madun

This paper compares some geotechnical properties of Kaolin, Laterite and Peat. Laterite was collected from Bukit Banang while Peat sample was collected from Parit Nipah, both locations were in Batu Pahat, Johor. Meanwhile, kaolin that was used in this research was manufactured kaolin. These soil samples were subjected to routine laboratory analysis and resulting data were analyzed statistically using a correlation analysis. A laboratory testing program consists of “Basic properties test” to obtain general information on the materials (e.g Natural moisture content, Atterberg Limit, Specific gravity, grain size analysis, chemical composition and pH) and “Geotechnical properties tests” to measure specific properties that characterize soil behaviour for design and constructability assessments (e.g Standard Proctor Test, Unconfined Compressive Strength and CBR).The results showed that the Natural/initial moisture content for laterite, peat and kaolin is 22.54%, 480.61% and 0.22% respectively. Meanwhile Specific gravity for each soil was in the range 1.50-2.79.It was also found that the pH of all soil is acidic which lay in the range of 3.76-5.95.The UCS for the optimally compacted sample of laterite is 445.77 kPa, kaolin is 199.23 kPa and for peat is 58.70 kPa. This paper summarizes the result of analysis performed on all tests conducted. Based on the results, the geotechnical property of the soil is a highly dependent with the type of soil and therefore, determining the soil characterization and the soil strength should be considered during the planning phase of any earthwork construction operation.


2012 ◽  
Vol 79 (4) ◽  
Author(s):  
Ramin M. H. Khorasany ◽  
Stanley G. Hutton

Analysis of the linear vibration characteristics of unconstrained rotating isotropic thin disks leads to the important concept of “critical speeds.” These critical rotational speeds are of interest because they correspond to the situation where a natural frequency of the rotating disk, as measured by a stationary observer, is zero. Such speeds correspond physically to the speeds at which a traveling circumferential wave, of shape corresponding to the mode shape of the natural frequency being considered, travel around the disk in the absence of applied forces. At such speeds, according to linear theory, the blade may respond as a space fixed stationary wave and an applied space fixed dc force may induce a resonant condition in the disk response. Thus, in general, linear theory predicts that for rotating disks, with low levels of damping, large responses may be encountered in the region of the critical speeds due to the application of constant space fixed forces. However, large response invalidates the predictions of linear theory which has neglected the nonlinear stiffness produced by the effect of in-plane forces induced by large displacements. In the present paper, experimental studies were conducted in order to measure the frequency response characteristics of rotating disks both in an idling mode as well as when subjected to a space fixed lateral force. The applied lateral force (produced by an air jet) was such as to produce displacements large enough that non linear geometric effects were important in determining the disk frequencies. Experiments were conducted on thin annular disks of different thickness with the inner radius clamped to the driving arbor and the outer radius free. The results of these experiments are presented with an emphasis on recording the effects of geometric nonlinearities on lateral frequency response. In a companion paper (Khorasany and Hutton, 2010, “Vibration Characteristics of Rotating Thin Disks—Part II: Analytical Predictions,” ASME J. Mech., 79(4), p. 041007), analytical predictions of such disk behavior are presented and compared with the experimental results obtained in this study. The experimental results show that in the case where significant disk displacements are induced by a lateral force, the frequency characteristics are significantly influenced by the magnitude of forced displacements.


Author(s):  
J. H. Atkinson ◽  
J. S. Evans ◽  
D. Richardson

AbstractSoil behaviour is stress history dependent and stress path dependent and soil parameters, particularly those for stress-strain behaviour, measured in conventional triaxial tests may not represent the behaviour of soil in many civil engineering works.To obtain more realistic parameters it may be necessary to conduct laboratory tests which more closely represent in situ conditions before and during construction.The paper describes equipment developed at The City University to carry out stress path tests simply and economically. A series of CU triaxial tests and stress path tests on reconstituted soil illustrate the dependence of measured soil parameters on stress history and stress path.


Author(s):  
Osezua Obehi Ibhadode ◽  
Ishaya Musa Dagwa ◽  
Akii Okonigbon Akhaehomen Ibhadode

Calibration curves of a multi-component dynamometer is of essence in machining operations in a lathe machine as they serve to provide values of force and stress components for cutting tool development and optimization. In this study, finite element analysis has been used to obtain the deflection and stress response of a two component cutting tool lathe dynamometer, for turning operation, when the cutting tool is subjected to cutting and thrust forces from 98.1N to 686.7N (10 to 70kg-wts), at intervals of 98.1N(10kg-wt). By obtaining the governing equation, modeling the dynamometer assembly, defining boundary conditions, generating the assembly mesh, and simulating in Inventor Professional; horizontal and vertical components of deflection by the dynamometer were read off for three different loading scenarios. For these three loading scenarios, calibration plots by experiment compared with plots obtained from simulation by finite element analysis gave accuracies of 79%, 95%, 84% and 36%, 57%, 63% for vertical and horizontal deflections respectively. Also, plots of horizontal and vertical components of Von Mises stress against applied forces were obtained.


Sign in / Sign up

Export Citation Format

Share Document