scholarly journals 3D GIS Modeling of Soft Geo-Objects: Taking Rainfall, Overland Flow, and Soil Erosion as an Example

Author(s):  
Dayong Shen ◽  
Kaoru Takara ◽  
Yuling Liu
1999 ◽  
Vol 39 (12) ◽  
pp. 41-45 ◽  
Author(s):  
A. I. Fraser ◽  
T. R. Harrod ◽  
P. M. Haygarth

Soil erosion, in the form of transported suspended sediment in overland flow, is often associated with high rates of particulate phosphorus (PP) (total P>0.45 μm) transfer from land to watercourses. Particulate P may provide a long-term source of P for aquatic biota. Twenty-two sites for winter overland flow monitoring were selected in south-west England within fields ranging from 0.2–3.8 ha on conventionally-managed arable land. Fields were situated on highly porous, light textured soils, lacking impermeable horizons and often overlying major aquifers. Long arable use and modern cultivation methods result in these soils capping under rain impact. Overland flow was observed when rainfall intensity approached the modest rate of 0.8 mm hr−1 on land at or near to field capacity. Low intensity rainfall (<2 mm hr−1) produced mean suspended sediment losses of 14 kg ha−1 hr−1, with associated PP transfer rates of 16 g ha−1 hr−1. In high intensity rainfall (>9 mm hr−1) mean PP losses of 319 g ha−1 hr−1 leaving the field were observed. As might be expected, there was a good relationship between PP and suspended sediment transfer in overland flow leaving the sites. The capacity of light soils to cap when in arable use, combined with heavy or prolonged rainfall, resulted in substantial discharges, soil erosion and associated PP transfer. Storms with heavy rain, typically of only a few hours duration, were characterised by considerable losses of PP. Such events, with return periods of once or twice a winter, may account for a significant proportion of total annual P transfer from agricultural soils under arable crops. However, contributions from less intense rain with much longer duration (around 100 hours per winter in many arable districts of the UK) are also demonstrated here.


Soil Research ◽  
2000 ◽  
Vol 38 (2) ◽  
pp. 313 ◽  
Author(s):  
C. Carroll ◽  
L. Merton ◽  
P. Burger

In 1993, a field study commenced to determine the impact of vegetative cover and slope on runoff, erosion, and water quality at 3 open-cut coal mine sites. Runoff, sediment, and water quality were measured on 0.01-ha field plots from 3 slope gradients (10, 20, 30%), with pasture and tree treatments imposed on soil and spoil material, and 2 soil and spoil plots left bare. The greatest soil erosion occurred before pasture cover established, when a large surface area of soil (>0.5 plot area) was exposed to rainfall and overland flow. Once buffel grass (Cenchrus ciliaris) colonised soil plots, there were negligible differences in soil erosion between slope gradients. On spoil, Rhodes grass (Chloris gayana) reduced in situ soluble salt content, and reduced runoff electrical conductivity to levels measured in surrounding creeks. Where spoil crusted there was poor vegetative growth and unacceptably large runoff and erosion rates throughout the study.


2021 ◽  
Vol 58 (03) ◽  
pp. 286-299
Author(s):  
Mahesh Chand Singh ◽  
Rohit Singh ◽  
Abrar Yousuf ◽  
Vishnu Prasad

The present study examined 35 morphometric parameters related to stream/drainage network, catchment geometry, and relief aspects for hydrological characterization of the Thana Dam catchment using geospatial tools and techniques. The dam catchment was delineated using the high-resolution Advanced Land Observing Satellite Phased Array type L-band Synthetic Aperture Radar (ALOS PALSAR) Digital Elevation Model (DEM) data in ArcGIS 10.4.1 software using the Arc Hydro tools. The catchment is comprised of 4th order stream, obtained using a stream threshold value of 100 m length. The lower values of elongation ratio (0.61), circularity ratio (0.22), and form factor (0.29) indicated higher soil erosion potential, mainly due to their inverse relationship with land erodibility. Moreover, the higher values of stream frequency (15.7), drainage density (>5.0), drainage texture (7.48 km-1), and mean bifurcation ratio (4.08-6.33) indicated higher runoff potential, which would intensify the soil erosion, mainly due to their direct relationship with erodibility. Bifurcation ratio, elongation ratio, circulatory ratio, form factor, altogether indicated an elongated shape of the catchment with a fine drainage texture. The higher values of bifurcation ratio and texture ratio of the catchment also indicated severe overland flow (low infiltration rate) with a limited scope for groundwater recharge in the area, which in turn might significantly encourage the soil erosion. Overall, it was concluded that the catchment has a huge runoff potential resulting in high soil erosion due to its fine texture, impermeable subsurface material, steep slope, low infiltration rate, limited vegetation, longer duration of overland flow, and higher surface runoff. The morphometric analysis was found to be suitable for identifying catchment shape and the factors affecting hydrologic conditions and erodibility of the catchment. Thus, Geo-informatics based morphometric analysis of a reservoir catchment can be useful to study the erosion potential in relation to hydrologic (rainfall-runoff relationship) and other related land characteristics (e.g., relief, slope, infiltration rate, etc.).


1993 ◽  
Vol 36 (6) ◽  
pp. 1743-1753 ◽  
Author(s):  
A. P. B. Proffitt ◽  
P. B. Hairsine ◽  
C. W. Rose

CATENA ◽  
2014 ◽  
Vol 113 ◽  
pp. 202-212 ◽  
Author(s):  
V. Butzen ◽  
M. Seeger ◽  
S. Wirtz ◽  
M. Huemann ◽  
C. Mueller ◽  
...  

Soil Research ◽  
1983 ◽  
Vol 21 (2) ◽  
pp. 109 ◽  
Author(s):  
MJ Singer ◽  
PH Walker

The 20-100 mm portion of a yellow podzolic soil (Albaqualf) from the Ginninderra Experiment Station (A.C.T.) was used in a rainfall simulator and flume facility to elucidate the interactions between raindrop impact, overland water flow and straw cover as they affect soil erosion. A replicated factorial design compared soil loss in splash and runoff from 50 and 100 mm h-1 rainfall, the equivalent of 100 mm h-1 overland flow, and 50 and 100 mm h-1 rainfall plus the equivalent of 100 mm h-' overland flow, all at 0, 40 and 80% straw cover on a 9% slope. As rainfall intensity increased, soil loss in splash and runoff increased. Within cover levels, the effect of added overland flow was to decrease splash but to increase total soil loss. This is due to an interaction between raindrops and runoff which produces a powerful detaching and transporting mechanism within the flow known as rain-flow transportation. Airsplash is reduced, in part, because of the changes in splash characteristics which accompany changes in depths of runoff water. Rain-flow transportation accounted for at least 64% of soil transport in the experiment and airsplash accounted for no more than 25% of soil transport The effects of rainfall, overland flow and cover treatments, rather than being additive, were found to correlate with a natural log transform of the soil loss data.


2021 ◽  
Author(s):  
Ahsan Raza ◽  
Thomas Gaiser ◽  
Muhammad Habib-Ur-Rahman ◽  
Hella Ahrends

<p>Information on field scale soil erosion and related sedimentation process is very important for natural resource management and sustainable farming. Plenty of models are available for study of these processes but only a few are suitable for dynamic small scale soil erosion assessments. The available models vary greatly in terms of their input requirements, analysis capabilities, process [t1] complexities, spatial and temporal scale of their intended use, practicality, the manner they represent the processes, and the type of output information they provide. The study aims in examining, theoretically, 51 models classified as physical, conceptual, and empirical based on their representation of the processes of soil erosion. The literature review shows that there is no specific model available for soil erosion prediction under agroforestry systems.   It is further suggested that models like EPIC, PERFECT, GUEST, EPM, TCRP, SLEMSA, APSIM, RillGrow, and CREAMS can be potentially used for soil erosion assessment at plot/field scale at daily time steps. Most of these models are capable to simulate the soil erosion process at small scale; further model development is needed regarding their limitations with respect to components interaction i.e., rainfall intensity, overland flow, crop cover, and their difficulties in upscaling. The research suggested that SIMPLACE network can provide modules with LintulBiomass, HillFlow, Runoff to develop new dynamic components to simulate overland flow and soil erosion incorporating improved upscaling capabilities</p>


1998 ◽  
Vol 130 (4) ◽  
pp. 473-488 ◽  
Author(s):  
P. A. JAMES ◽  
R. W. ALEXANDER

Studies of soil erosion in upland and marginal upland Britain are reviewed. Processes affecting soil erosion and runoff are described in marginal upland improved pastures of differing age in the Clwydian Hills, including one which was cultivated twice during the study period. A Gerlach-type trough was designed for trapping sediment and filtered runoff from bounded plots and for operating under grazing. Erosion and runoff amounts are interpreted in the light of ground cover, rainfall amounts and intensity, the action of grazing stock and other animals, and other influences. The chief erosion processes are the action of animals and surface wash by unconcentrated overland flow; no rilling occurred. The significance of particle size of eroded sediment is discussed.


Sign in / Sign up

Export Citation Format

Share Document