scholarly journals Orthodontic Therapeutic Biomarkers in Saliva and Gingival Crevicular Fluid

2021 ◽  
Author(s):  
Sagar S. Bhat ◽  
Ameet V. Revankar ◽  
Shrinivas M. Basavaraddi

Several biologically active substances representing the bone deposition and resorption processes are released following damage to periodontal tissue during orthodontic movement. Biomarkers are by definition objective, quantifiable characteristics of biological processes. The analysis of saliva/salivary fluid and Gingival crevicular fluid (GCF) may be an accepted way to examine the ongoing biochemical processes associated with bone turnover during orthodontic tooth movement and fixed orthodontic treatment pain. Assessing the presence of these salivary physiological biomarkers would benefit the clinician in appropriate pain diagnosis and management objectively of various problems encountered during the orthodontic procedures and for better outcome of biomechanical therapy. Due to lack of standardized collection procedure, even though well accepted by patients, saliva is often neglected as a body fluid of diagnostic and prognostic value. A literature search was carried out in major databases such as PubMed, Medline, Cochrane library, Web of Science, Google Scholar, Scopus and EMBASE for relevant studies. Publication in English between 2000 to 2021 which estimated Saliva markers as indicators of orthodontic tooth movement was included. The list of biomarkers available to date was compiled and is presented in table format. Each biomarker is discussed separately based on the available and collected evidences. Several sensitive salivary and GCF biomarkers are available to detect the biomechanical changes occurring during orthodontic tooth movement and pain occurring during fixed orthodontic therapy. Further focussed research might help to analyze the sensitivity and reliability of these biomarkers or cytokines, which in turn can lead to the development of chairside tests to assess the pain experienced by patients during orthodontic therapy and finally the outcome of the fixed orthodontic therapy.

2015 ◽  
Vol 16 (7) ◽  
pp. 578-587 ◽  
Author(s):  
Adel M Alhadlaq

ABSTRACT Background The analysis of gingival crevicular fluid (GCF) may be an acceptable way to examine the ongoing biochemical processes associated with bone turnover during orthodontic tooth movement. If it is possible to biologically monitor and predict the outcome of orthodontic forces, then the management of appliances could be based on individual tissue responses, and the effectiveness of the treatment could be improved. Methodology A literature search was carried out in major databases, such as medline, EMBASE, cochrane library, web of science, google scholar and scopus for relevant studies. Publications in English between 2000 and 2014 which estimated GCF markers as indicators of orthodontic tooth movement were included. Results The list of biomarkers available to date was compiled and presented in table format. Each biomarker is discussed separately based on the available evidence. Conclusion Several sensitive GCF markers are available to detect the biomechanical changes occurring during orthodontic tooth movement. Further focused research might help to analyze the sensitivity and reliability of these indicators, which in turn can lead to the development of chairside tests to assess the outcome of orthodontic therapy. How to cite this article Alhadlaq AM. Biomarkers of Orthodontic Tooth Movement in Gingival Crevicular Fluid: A Systematic Review. J Contemp Dent Pract 2015;16(7):578-587.


Author(s):  
Dr. Samir Jain ◽  
Dr. Abhishek Sinha ◽  
Dr. Anurag Rai ◽  
Dr. Sapna Jain

The numbers of patients undergoing orthodontic treatment have increased spectacularly from past several decades. During orthodontic tooth movement the early response of periodontal tissues to mechanical stress is an acute inflammatory reaction. Mechanical stress from orthodontic appliances is believed to induce cells in the periodontal ligament (PDL) to form biologically active substances, such as enzymes and cytokines, responsible for connective tissue remodeling. Biochemical analysis of the gingival crevicular fluid (GCF) has provided a non-invasive model for investigating the cellular response of the underlying PDL during orthodontic tooth movement in vivo. In GCF, several substances such as interleukin, tumor necrosis factor, leptin, osteoprotegerin and alkaline phosphatase have been found to be significantly elevated in teeth under orthodontic forces compared with untreated control teeth. [14] Hence due to the above relevance the present study was planned for Assessment of Leptin Concentration in Gingival Crevicular Fluid (GCF) during Orthodontic Tooth Movement. The present study was planned in Department of Private Practioner, Swastik Dental Clinic and Orthodontic Centre Gaya. Total 10 cases of orthodontic of age 13 – 15 years were evaluated in the present study. For each subject, a maxillary cuspid undergoing distal orthodontic tooth movement was used as an experimental tooth, and the contralateral cuspids served as control tooth. Orthodontic brackets were placed on the canines. Experimental canines were moved in the distal direction through an archwire by use of an elastic chain exerting an initial force of 250 g. The amount of tooth movement for each tooth was measured with digimaticcalipers. At the distal aspect of experimental and control teeth, GCF was collected for subsequent analysis and the following examinations of the periodontium were conducted: Probing depth, presence or absence of plaque, and bleeding on probing. The collection and examinations were conducted immediately before activation and at 1 hr, 1 day, and 7days after the initiation of tooth movement. The data generated from the present study concludes that concentration of leptin in the GCF is decreased by orthodontic tooth movement. Leptin may be one of the mediators associated with orthodontic tooth movement. Orthodontic tooth movement can be carried out without any significant destructive changes in investing tissues of the teeth provided oral hygiene is properly maintained. Keywords: Leptin Gingival crevicular fluid, GCF, orthodontic, etc.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Fabrizia d'Apuzzo ◽  
Salvatore Cappabianca ◽  
Domenico Ciavarella ◽  
Angela Monsurrò ◽  
Armando Silvestrini-Biavati ◽  
...  

Biologically active substances are expressed by cells within the periodontium in response to mechanical stimuli from orthodontic appliances. Several possible biomarkers representing biological modifications during specific phenomena as simile-inflammatory process, bone resorption and formation, periodontal ligament changes, and vascular and neural responses are proposed. Citations to potentially published trials were conducted by searching PubMed, Cochrane databases, and scientific textbooks. Additionally, hand searching and contact with experts in the area were undertaken to identify potentially relevant published and unpublished studies. Selection criteria were as follows: animal models involving only mice and rats undergoing orthodontic treatment; collection of gingival crevicular fluid (GCF) as a noninvasively procedure for humans; no other simultaneous treatment that could affect experimental orthodontic movement. The data suggest that knowledge of the remodeling process occurring in periodontal tissues during orthodontic and orthopedic therapies may be a clinical usefulness procedure leading to proper choice of mechanical stress to improve and to shorten the period of treatment, avoiding adverse consequences. The relevance for clinicians of evaluating the rate of some substances as valid biomarkers of periodontal effects during orthodontic movement, by means of two models of study,mice and men, is underlined.


2021 ◽  
Vol 11 (2) ◽  
pp. 521
Author(s):  
Simina Chelărescu ◽  
Petra Șurlin ◽  
Mioara Decusară ◽  
Mădălina Oprică ◽  
Eugen Bud ◽  
...  

Background: The crevicular fluid analysis represents a useful diagnosis tool, with the help of which noninvasive cellular metabolic activity can be analyzed. The aim of the study is to investigate comparatively IL1β and IL6 in the gingival crevicular fluid of clinically healthy adolescents and young adults during the acute phase of orthodontic treatment. Methods: Gingival crevicular fluid was collected from 20 patients (aged between 11 and 28) undergoing orthodontic treatment. Measurements were taken before (T0) and after 24 h after distalization forces were activated (T1). IL1β and IL 6 were analyzed using Elisa tests. The statistical tests used were two-sided t tests. Results: Between the two time periods there was a significant raise both in the crevicular fluid rate (0.57 µL at T0 vs. 0.95 µL at T1, p = 0.001) and in IL1β levels (15.67 pg/µL at T0 vs. 27.94 pg/µL at T1, p = 0.009). We were able to identify IL6 only in a third of the sites. There is a significantly increased level of ILβ at T1 in adolescents, more than in young adults (42.96 pg/µL vs. 17.93 pg/µL, p = 0.006). Conclusions: In the early stage of orthodontic treatment, the periodontal tissues of adolescents are more responsive to orthodontic forces than those of young adults.


2021 ◽  
Vol 10 (7) ◽  
pp. 1405
Author(s):  
Fabrizia d’Apuzzo ◽  
Ludovica Nucci ◽  
Ines Delfino ◽  
Marianna Portaccio ◽  
Giuseppe Minervini ◽  
...  

Optical vibrational techniques show a high potentiality in many biomedical fields for their characteristics of high sensitivity in revealing detailed information on composition, structure, and molecular interaction with reduced analysis time. In the last years, we have used these techniques for investigating gingival crevicular fluid (GCF) and periodontal ligament (PDL) during orthodontic tooth treatment. The analysis with Raman and infrared signals of GCF and PDL samples highlighted that different days of orthodontic force application causes modifications in the molecular secondary structure at specific wavenumbers related to the Amide I, Amide III, CH deformation, and CH3/CH2. In the present review, we report the most relevant results and a brief description of the experimental techniques and data analysis procedure in order to evidence that the vibrational spectroscopies could be a potential useful tool for an immediate monitoring of the individual patient’s response to the orthodontic tooth movement, aiming to more personalized treatment reducing any side effects.


2002 ◽  
Vol 122 (5) ◽  
pp. 548-556 ◽  
Author(s):  
Giuseppe Perinetti ◽  
Michele Paolantonio ◽  
Michele D'Attilio ◽  
Domenico D'Archivio ◽  
Domenico Tripodi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document