scholarly journals Time Series and Renewable Energy Forecasting

Author(s):  
Mahmoud Ghofrani ◽  
Anthony Suherli
2021 ◽  
Vol 13 (4) ◽  
pp. 2393
Author(s):  
Md Mijanur Rahman ◽  
Mohammad Shakeri ◽  
Sieh Kiong Tiong ◽  
Fatema Khatun ◽  
Nowshad Amin ◽  
...  

This paper presents a comprehensive review of machine learning (ML) based approaches, especially artificial neural networks (ANNs) in time series data prediction problems. According to literature, around 80% of the world’s total energy demand is supplied either through fuel-based sources such as oil, gas, and coal or through nuclear-based sources. Literature also shows that a shortage of fossil fuels is inevitable and the world will face this problem sooner or later. Moreover, the remote and rural areas that suffer from not being able to reach traditional grid power electricity need alternative sources of energy. A “hybrid-renewable-energy system” (HRES) involving different renewable resources can be used to supply sustainable power in these areas. The uncertain nature of renewable energy resources and the intelligent ability of the neural network approach to process complex time series inputs have inspired the use of ANN methods in renewable energy forecasting. Thus, this study aims to study the different data driven models of ANN approaches that can provide accurate predictions of renewable energy, like solar, wind, or hydro-power generation. Various refinement architectures of neural networks, such as “multi-layer perception” (MLP), “recurrent-neural network” (RNN), and “convolutional-neural network” (CNN), as well as “long-short-term memory” (LSTM) models, have been offered in the applications of renewable energy forecasting. These models are able to perform short-term time-series prediction in renewable energy sources and to use prior information that influences its value in future prediction.


Author(s):  
Carlos A. Severiano ◽  
Petrônio de Cândido de Lima e Silva ◽  
Miri Weiss Cohen ◽  
Frederico Gadelha Guimarães

Cybersecurity ◽  
2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Raphael Anaadumba ◽  
Qi Liu ◽  
Bockarie Daniel Marah ◽  
Francis Mawuli Nakoty ◽  
Xiaodong Liu ◽  
...  

AbstractEnergy forecasting using Renewable energy sources (RESs) is gradually gaining weight in the research field due to the benefits it presents to the modern-day environment. Not only does energy forecasting using renewable energy sources help mitigate the greenhouse effect, it also helps to conserve energy for future use. Over the years, several methods for energy forecasting have been proposed, all of which were more concerned with the accuracy of the prediction models with little or no considerations to the operating environment. This research, however, proposes the uses of Deep Neural Network (DNN) for energy forecasting on mobile devices at the edge of the network. This ensures low latency and communication overhead for all energy forecasting operations since they are carried out at the network periphery. Nevertheless, the cloud would be used as a support for the mobile devices by providing permanent storage for the locally generated data and a platform for offloading resource-intensive computations that exceed the capabilities of the local mobile devices as well as security for them. Electrical network topology was proposed which allows seamless incorporation of multiple RESs into the distributed renewable energy source (D-RES) network. Moreover, a novel grid control algorithm that uses the forecasting model to administer a well-coordinated and effective control for renewable energy sources (RESs) in the electrical network is designed. The electrical network was simulated with two RESs and a DNN model was used to create a forecasting model for the simulated network. The model was trained using a dataset from a solar power generation company in Belgium (elis) and was experimented with a different number of layers to determine the optimum architecture for performing the forecasting operations. The performance of each architecture was evaluated using the mean square error (MSE) and the r-square.


2018 ◽  
Vol 7 (1.6) ◽  
pp. 20 ◽  
Author(s):  
Ansari Saleh Ahmar

Humans in this world are very dependent on petroleum and energy. Petroleum and other energies are a major source in supporting human life. Regarding the reduced petroleum availability, a new energy is needed to replace the role of petroleum. Nowadays, there is much renewable energy that have been discovered and used. The purpose of this research is to predict the total primary energy supply in Indonesia by using α-Sutte Indicator and ARIMA method, and comparing those four methods which are effective in predicting data. Data from the research is renewable energy (total primary energy supply) which is obtained from OECD from 1971-2015. From the research, it is found that the α-Sutte Indicator method is more suitable to predict renewable energy (total primary energy supply) data in Indonesia compared to ARIMA (0,1,0). 


2020 ◽  
Vol 23 (1) ◽  
pp. 171-180
Author(s):  
Kusum Tharani ◽  
Neeraj Kumar ◽  
Vishal Srivastava ◽  
Sakshi Mishra ◽  
M. Pratyush Jayachandran

Sign in / Sign up

Export Citation Format

Share Document