scholarly journals Integrating Cloud Computing with Next-Generation Telematics for Energy Sustainability in Vehicular Networks

Author(s):  
Matthew Liotine
2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Danielle V. Handel ◽  
Anson T. Y. Ho ◽  
Kim P. Huynh ◽  
David T. Jacho-Chávez ◽  
Carson H. Rea

AbstractThis paper describes how cloud computing tools widely used in the instruction of data scientists can be introduced and taught to economics students as part of their curriculum. The demonstration centers around a workflow where the instructor creates a virtual server and the students only need Internet access and a web browser to complete in-class tutorials, assignments, or exams. Given how prevalent cloud computing platforms are becoming for data science, introducing these techniques into students’ econometrics training would prepare them to be more competitive when job hunting, while making instructors and administrators re-think what a computer laboratory means on campus.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1400
Author(s):  
Muhammad Adnan ◽  
Jawaid Iqbal ◽  
Abdul Waheed ◽  
Noor Ul Amin ◽  
Mahdi Zareei ◽  
...  

Modern vehicles are equipped with various sensors, onboard units, and devices such as Application Unit (AU) that support routing and communication. In VANETs, traffic management and Quality of Service (QoS) are the main research dimensions to be considered while designing VANETs architectures. To cope with the issues of QoS faced by the VANETs, we design an efficient SDN-based architecture where we focus on the QoS of VANETs. In this paper, QoS is achieved by a priority-based scheduling algorithm in which we prioritize traffic flow messages in the safety queue and non-safety queue. In the safety queue, the messages are prioritized based on deadline and size using the New Deadline and Size of data method (NDS) with constrained location and deadline. In contrast, the non-safety queue is prioritized based on First Come First Serve (FCFS) method. For the simulation of our proposed scheduling algorithm, we use a well-known cloud computing framework CloudSim toolkit. The simulation results of safety messages show better performance than non-safety messages in terms of execution time.


Proceedings ◽  
2019 ◽  
Vol 42 (1) ◽  
pp. 64 ◽  
Author(s):  
Fidel Rodríguez-Corbo ◽  
Leyre Azpilicueta ◽  
Mikel Celaya-Echarri ◽  
Peio López-Iturri ◽  
Imanol Picallo ◽  
...  

With the growing demand of vehicle-mounted sensors over the last years, the amount of critical data communications has increased significantly. Developing applications such as autonomous vehicles, drones or real-time high-definition entertainment requires high data-rates in the order of multiple Gbps. In the next generation of vehicle-to-everything (V2X) networks, a wider bandwidth will be needed, as well as more precise localization capabilities and lower transmission latencies than current vehicular communication systems due to safety application requirements; 5G millimeter wave (mmWave) technology is envisioned to be the key factor in the development of this next generation of vehicular communications. However, the implementation of mmWave links arises with difficulties due to blocking effects between mmWave transceivers, as well as different channel impairments for these high frequency bands. In this work, the mmWave channel propagation characterization for V2X communications has been performed by means of a deterministic in-house 3D ray launching simulation technique. A complex heterogeneous urban scenario has been modeled to analyze the different propagation phenomena of multiple mmWave V2X links. Results for large and small-scale propagation effects are obtained for line-of-sight (LOS) and non-LOS (NLOS) trajectories, enabling inter-data vehicular comparison. These analyzed results and the proposed methodology can aid in an adequate design and implementation of next generation vehicular networks.


2011 ◽  
Vol 55-57 ◽  
pp. 1053-1057
Author(s):  
Gui De Zheng ◽  
Ming Chen

The next generation of scientific experiments and studies are being carried out by large collaborations of researchers distributed around the world engaged in analysis of huge collections of data generated by scientific instruments. Grid computing has emerged as an enabler for such collaborations as it aids communities in sharing resource to achieve common objective. This paper defines the problem of scheduling distributed data-intensive application on to Gird resource and presents a formal resource and application model for the problem.


2014 ◽  
Vol 16 (2) ◽  
pp. 144-148
Author(s):  
Rajan Kumar Yadav ◽  
◽  
Avinash Thakur ◽  
Manoranjan Kumar

2020 ◽  
Author(s):  
Tanweer Alam

<p>The fog computing is the emerging technology to compute, store, control and connecting smart devices with each other using cloud computing. The Internet of Things (IoT) is an architecture of uniquely identified interrelated physical things, these physical things are able to communicate with each other and can transmit and receive information. <a>This research presents a framework of the combination of the Internet of Things (IoT) and Fog computing. The blockchain is also the emerging technology that provides a hyper, distributed, public, authentic ledger to record the transactions. Blockchains technology is a secured technology that can be a boon for the next generation computing. The combination of fog, blockchains, and IoT creates a new opportunity in this area. In this research, the author presents a middleware framework based on the blockchain, fog, and IoT. The framework is implemented and tested. The results are found positive. </a></p>


Author(s):  
Kayhan Zrar Ghafoor ◽  
Marwan Aziz Mohammed ◽  
Kamalrulnizam Abu Bakar ◽  
Ali Safa Sadiq ◽  
Jaime Lloret

Recently, Vehicular Ad Hoc Networks (VANET) have attracted the attention of research communities, leading car manufacturers, and governments due to their potential applications and specific characteristics. Their research outcome was started with awareness between vehicles for collision avoidance and Internet access and then expanded to vehicular multimedia communications. Moreover, vehicles’ high computation, communication, and storage resources set a ground for vehicular networks to deploy these applications in the near future. Nevertheless, on-board resources in vehicles are mostly underutilized. Vehicular Cloud Computing (VCC) is developed to utilize the VANET resources efficiently and provide subscribers safe infotainment services. In this chapter, the authors perform a survey of state-of-the-art vehicular cloud computing as well as the existing techniques that utilize cloud computing for performance improvements in VANET. The authors then classify the VCC based on the applications, service types, and vehicular cloud organization. They present the detail for each VCC application and formation. Lastly, the authors discuss the open issues and research directions related to VANET cloud computing.


2015 ◽  
pp. 566-579
Author(s):  
Keyun Ruan

Cloud computing is a major transition, and it comes at a unique historical and strategic time for applying foundational design thinking to secure the next-generation computing infrastructure and enable waves of business and technological innovation. In this chapter, the researcher summarizes six key research and development areas for designing a forensic-enabling cloud ecosystem, including architecture and matrix, standardization and strategy, evidence segregation, security and forensic integration, legal framework, and privacy.


Author(s):  
Ryan Florin ◽  
Stephan Olariu

Vehicular clouds is an active area of research that has emerged at the nexus of conventional cloud computing and vehicular networks. The defining differences between conventional and vehicular clouds include the heterogeneity and volatility of compute resources and the bandwidth-challenged network fabric. A variety of new architectures and services for vehicular clouds have been proposed, mostly as incremental extensions of the VANET platform. As vehicular cloud research continues and expands, a careful eye should be kept on the restrictions that come with the mobility, limited network, and heterogeneity of resources. The first main contribution of this chapter is to survey recent work of VCs with an eye on the realistic and unrealistic. Our second main goal is to realign the VC community with a realistic vision for the future by spelling out a number of challenges faced by the VC research community.


Sign in / Sign up

Export Citation Format

Share Document