scholarly journals Material Removal Mechanism and Force Model of Nanofluid Minimum Quantity Lubrication Grinding

Author(s):  
Yanbin Zhang ◽  
Changhe Li ◽  
Yongjun Zhao ◽  
Xin Cui ◽  
Xiufang Bai ◽  
...  
2021 ◽  
Author(s):  
Ruchu Xu ◽  
Xuelong Wen ◽  
Yadong Gong ◽  
Xingchen Yu

Abstract High entropy alloy (HEA) is an advanced alloy material, which has a wide application prospect due to its excellent properties. However, the material removal mechanism and change rule of grinding force of HEA in the grinding process have seldom been studied. The main work of this paper is that the material removal mechanism of the FeCoNiCrMo0.1 HEA is obtained by analyzing grinding debris and subsurface microstructure after grinding, the theoretical grinding force model of HEAs in plane grinding process is established on the basis of the force of a single abrasive grain, and the experimental verification is performed. According to the experimental results, the influences of different grinding parameters on grinding force are discussed, the influences of different types of grinding wheels on grinding force are analyzed, and the grinding forces generated by grinding different FeCoNiCr HEAs are compared. The results indicate that the material removal mechanism of FeCoNiCrMo0.1 HEA is the plastic removal. With the increase of grinding speed and the decrease of grinding depth and feed speed, both normal and tangential grinding forces decrease. Under the same grinding parameters, the grinding force produced by electroplated CBN grinding wheel is greater, followed by resin-bonded CBN grinding wheel and vitrified CBN grinding wheel. The grinding force produced by grinding FeCoNiCrAl0.1 HEA is lower than that produced by grinding FeCoNiCrMo0.1 HEA under the same grinding conditions. The calculated value of grinding force model is consistent with the experimental value, which can scientifically reflect the variation law of HEA grinding force.


2021 ◽  
Author(s):  
Fan Chen ◽  
Wenbo Bie ◽  
Yingli Chang ◽  
Bo Zhao ◽  
Xiaobo Wang ◽  
...  

Abstract Ceramics and other hard-and-brittle materials are very effectively processed by longitudinal-torsional coupled rotary ultrasonic machining (LTC-RUM). However, the cutting force evolution and the effects of processing parameters on the material removal mechanism in LTC-RUM need to be clarified for machining optimization. This paper proposes a cutting force model of the LTC-RUM of zirconia ceramics via the brittle material removal mechanism. Firstly, the kinematic analysis of a single abrasive grain was performed, with further consideration of the material removal volume, the effective contact time, and the impact force per one ultrasonic vibration cycle. Then, the longitudinal-torsional coupled vibration of the core tool was analyzed from the standpoint of wave energy conversion. The analytical model was finalized and experimentally verified by LTC-RUM tests. The cutting force curves predicted via the proposed model were in good agreement with the experimental results. The results obtained are considered instrumental in predicting the effects of processing parameters on cutting force during LTC-RUM of ceramics and their further optimization.


2004 ◽  
Vol 471-472 ◽  
pp. 26-31 ◽  
Author(s):  
Jian Xiu Su ◽  
Dong Ming Guo ◽  
Ren Ke Kang ◽  
Zhu Ji Jin ◽  
X.J. Li ◽  
...  

Chemical mechanical polishing (CMP) has already become a mainstream technology in global planarization of wafer, but the mechanism of nonuniform material removal has not been revealed. In this paper, the calculation of particle movement tracks on wafer surface was conducted by the motion relationship between the wafer and the polishing pad on a large-sized single head CMP machine. Based on the distribution of particle tracks on wafer surface, the model for the within-wafer-nonuniformity (WIWNU) of material removal was put forward. By the calculation and analysis, the relationship between the motion variables of the CMP machine and the WIWNU of material removal on wafer surface had been derived. This model can be used not only for predicting the WIWNU, but also for providing theoretical guide to the design of CMP equipment, selecting the motion variables of CMP and further understanding the material removal mechanism in wafer CMP.


2021 ◽  
pp. 103773
Author(s):  
Ruiwen Geng ◽  
Xiaojing Yang ◽  
Qiming Xie ◽  
Jianguo Xiao ◽  
Wanqing Zhang ◽  
...  

2006 ◽  
Vol 304-305 ◽  
pp. 276-280 ◽  
Author(s):  
Y.H. Ren ◽  
Zhi Xiong Zhou ◽  
Zhao Hui Deng

Surface microgrinding of the nanostructured WC/12Co coatings have been undertaken with diamond wheels under various conditions. Nondestructive and destructive approaches were utilized to assess damage in ground nanostructured coatings. Different surface and subsurface configurations were observed by scanning electron microscopy. This paper investigates the effects of microgrinding conditions on damage formation in the surface and subsurface layers of the ground nanostructured WC/12Co coatings. And the material-removal mechanism has been discussed.


Sign in / Sign up

Export Citation Format

Share Document