scholarly journals Optimal Trajectory Generation of Parallel Manipulator

2021 ◽  
Author(s):  
Chandan Choubey ◽  
Jyoti Ohri

In this paper we have designed an optimal trajectory generation (OTG) method to generate easy and errortless continuous path motion with quick converging by using Gray Wolf Optimization (GWO) method. This OTG method finds the trajectory path with minimum tracking-error, combined speed, joint increasing speed wrinkle as well as joint lurching move to follow a smooth along with error-free continuous path.

Robotica ◽  
2020 ◽  
pp. 1-17
Author(s):  
Chandan Choubey ◽  
Jyoti Ohri

SUMMARY In this paper we designed an optimal trajectory generation (OTG) method to generate easy and errorless continuous path motion with quick converging using Grey Wolf Optimization (GWO) method. The proposed OTG method finds the trajectory path with minimum tracking error, combined speed, joint increasing speed wrinkle, as well as joint lurching move to follow an error-free smooth continuous path.


2021 ◽  
Author(s):  
Stefano Feraco ◽  
Angelo Bonfitto ◽  
Irfan Khan ◽  
Nicola Amati ◽  
Andrea Tonoli

Author(s):  
Zhengsheng Chen ◽  
Minxiu Kong

To obtain excellent comprehensive performances of the planar parallel manipulator for the high-speed application, an integrated optimal design method, which integrated dimensional synthesis, motors/reducers selection, and control parameters tuning, is proposed, and the 3RRR parallel manipulator was taken as the example. The kinematic and dynamic performances of condition number, velocity index, acceleration capability, and low-order frequency are taken into accounts for the dimensional synthesis. Then, to match motors/reducers parameters and keep an economical cost, the constraint equations and the parameters library are built, and the cost is chosen as one of the optimization objectives. Also, to get high tracking accuracy, the dynamic forward plus proportional–derivative control scheme is introduced, and the tracking error is chosen as one of the optimization objectives. Hence, the optimization model including dimensional synthesis, motors/reducers selection and controller parameters tuning is established, which is solved by the genetic algorithm II (NSGA-II). The result shows that comprehensive performances can be effectively promoted through the proposed integrated optimal design, and the prototype was constructed according to the Pareto-optimal front.


1993 ◽  
Vol 29 (10) ◽  
pp. 1184-1190 ◽  
Author(s):  
Isao YAMAGUCHI ◽  
Takashi KIDA ◽  
Seiya UENO ◽  
Masaki TANAKA

Author(s):  
Matthew A. Cooper

This chapter studies a deterministic approach to transient trajectory generation and control as applied to the forced Van der Pol oscillatory system. This type of system tends towards a strongly nonlinear system, which can be considered chaotic. A classical tuning method, targeted exponential weighting, and isolated trajectory fractionalization trajectory generation methods are examined. Illustrating the given deterministic approach via the Van der Pol system highlights the potentially iterative nature of deterministic methods, and that traditional optimal linear time-invariant control techniques are unable to perform as desired whereas even an idealized nonlinear feedforward control significantly outperforms at the steady-state. It will be shown that utilizing a-priori knowledge of the system dynamics will enable the isolated trajectory fractionalization method to minimize the nonlinear transient effects due to miss-modeled or unmodeled plant dynamics, and that this benefit can be coupled with the targeted exponential weighting approach for greatly decreased trajectory tracking error on the order of a 92% reduction of the objective cost function in the presented case study based on the forced Van der Pol system.


Sign in / Sign up

Export Citation Format

Share Document