scholarly journals Chromium Genotoxicity associated with Respiratory Disease

2021 ◽  
Author(s):  
Jyoti Kant Choudhari ◽  
Jyotsna Choubey ◽  
Mukesh Kumar Verma ◽  
Anand Kumar Jayapal ◽  
Biju Prava Sahariah

Chromium existing in the biosphere in prominent two forms Cr (III) and Cr (VI) is a well-studied heavy metal. Cr (III) is considered as non-harmful and necessary element in diet whereas Cr(VI) is extremely toxic exerting various negative health impacts on human and other organisms. Mining activity is must for extracting economic minerals and a large number of people are related to these sites as worker or habitants and a major source of chromium exposure. Present chapter discusses genotoxic nature of chromium considering respiratory disease resulted from chromium exposure. The genotoxicity is illustrated in terms of chromium induced differential expressed genes (DEGs), transcription factors and microRNA regulating the DEGs and their gene ontology.

2021 ◽  
Vol 12 ◽  
Author(s):  
Ahmed H. El-Sappah ◽  
Rania G. Elbaiomy ◽  
Ahmed S. Elrys ◽  
Yu Wang ◽  
Yumin Zhu ◽  
...  

Metal tolerance proteins (MTPs) encompass plant membrane divalent cation transporters to specifically participate in heavy metal stress resistance and mineral acquisition. However, the molecular behaviors and biological functions of this family in Medicago truncatula are scarcely known. A total of 12 potential MTP candidate genes in the M. truncatula genome were successfully identified and analyzed for a phylogenetic relationship, chromosomal distributions, gene structures, docking analysis, gene ontology, and previous gene expression. M. truncatula MTPs (MtMTPs) were further classified into three major cation diffusion facilitator (CDFs) groups: Mn-CDFs, Zn-CDFs, and Fe/Zn-CDFs. The structural analysis of MtMTPs displayed high gene similarity within the same group where all of them have cation_efflux domain or ZT_dimer. Cis-acting element analysis suggested that various abiotic stresses and phytohormones could induce the most MtMTP gene transcripts. Among all MTPs, PF16916 is the specific domain, whereas GLY, ILE, LEU, MET, ALA, SER, THR, VAL, ASN, and PHE amino acids were predicted to be the binding residues in the ligand-binding site of all these proteins. RNA-seq and gene ontology analysis revealed the significant role of MTP genes in the growth and development of M. truncatula. MtMTP genes displayed differential responses in plant leaves, stems, and roots under five divalent heavy metals (Cd2+, Co2+, Mn2+, Zn2+, and Fe2+). Ten, seven, and nine MtMTPs responded to at least one metal ion treatment in the leaves, stems, and roots, respectively. Additionally, MtMTP1.1, MtMTP1.2, and MtMTP4 exhibited the highest expression responses in most heavy metal treatments. Our results presented a standpoint on the evolution of MTPs in M. truncatula. Overall, our study provides a novel insight into the evolution of the MTP gene family in M. truncatula and paves the way for additional functional characterization of this gene family.


2013 ◽  
Vol 3 (2) ◽  
Author(s):  
Peter Andráš ◽  
Ingrid Turisová ◽  
Eva Lacková ◽  
Sherif Kharbish ◽  
Jozef Krnác ◽  
...  

2008 ◽  
Vol 33 (2) ◽  
pp. 159-169 ◽  
Author(s):  
Peter G. Fuhrken ◽  
Chi Chen ◽  
Pani A. Apostolidis ◽  
Min Wang ◽  
William M. Miller ◽  
...  

Differentiation of hematopoietic stem and progenitor cells is an intricate process controlled in large part at the level of transcription. While some key megakaryocytic transcription factors have been identified, the complete network of megakaryocytic transcriptional control is poorly understood. Using global gene expression microarray analysis, Gene Ontology-based functional annotations, and a novel interlineage comparison with parallel, isogenic granulocytic cultures as a negative control, we closely examined the mRNA level of transcriptional regulators in megakaryocytes derived from human mobilized peripheral blood CD34+hematopoietic cells. This approach identified 199 differentially expressed transcription factors or transcriptional regulators. We identified and detailed the transcriptional kinetics of most known megakaryocytic transcription factors including GATA1, FLI1, and MAFG. Furthermore, many genes with transcription factor activity or transcription factor binding activity were identified in megakaryocytes that had not previously been associated with that lineage, including BTEB1, NR4A2, FOXO1A, MEF2C, HDAC5, VDR, and several genes associated with the tumor suppressor p53 (HIPK2, FHL2, and TADA3L). Protein expression and nuclear localization were confirmed in megakaryocytic cells for four of the novel candidate megakaryocytic transcription factors: FHL2, MXD1, E2F3, and RFX5. In light of the hypothesis that transcription factors expressed in a particular differentiation program are important contributors to such a program, these data substantially expand our understanding of transcriptional regulation in megakaryocytic differentiation of stem and progenitor cells.


2020 ◽  
Vol 192 (8) ◽  
Author(s):  
Behzad Shahmoradi ◽  
Sahar Hajimirzaei ◽  
Jamil Amanollahi ◽  
Kitirote Wantalla ◽  
Afshin Maleki ◽  
...  

2001 ◽  
Vol 73 (2) ◽  
pp. 277-286 ◽  
Author(s):  
EDISON D. BIDONE ◽  
LUCIANO LAYBAUER ◽  
ZULEICA C. CASTILHOS ◽  
JOHN L. MADDOCK

The Camaquã Copper Mines (CCM) were the main sulphide deposit in Southern Brazil and have been in operation from last century to 1996. To evaluate water contamination and environmental risk increase by heavy metals from mining operations, two points on the João Dias Creek were sampled (Station 1, background area and Station 2, contaminated area). Mining activity increased the natural weakly heavy metal fluxes by approximately 5424 kg. ( ~ 60%) of the total metal flux, 1542 kg. ( ~ 49%) of dissolved and 3881 kg ( ~ 66%) of particulate metal flux. Total metal flux of anthropic origin was mostly due to Fe followed by Cu > Zn > Mn whereas Cd, As and Pb fluxes were negligible. The potential human health hazards and risk assessment related to daily intake of water from João Dias Creek are mostly due to Mn and should be of concern for the contaminated area. The ingestion of water from station 2 represents incremental risks of 130% and 59% respectively, considering the non-carcinogenic and the carcinogenic effects. The real increase of human health hazards may be greater than those related to the total concentrations since Mn and As dissolved concentrations were 5.5 and 2.0 higher than acceptable, respectively.


2021 ◽  
Author(s):  
Ahmed El Sappah ◽  
Manzar Abbas ◽  
Ahmed S. Elrys ◽  
Vivek Yadav ◽  
Hamza H. El-Sappah ◽  
...  

Abstract The Heat shock protein-70 (Hsp70) gene family is one of the protective mechanisms; however, it has not been widely studied in tomatoes. Therefore, the current study provides the first report genome-wide analysis of the Hsp70 gene family in tomato (Solanum lycopersicum L.) under five heavy metals (Cd2+, Co2+, Mn2+, Zn2+, and Fe2+) stresses. We identified 23 candidate genes of the Hsp70 gene family based on the PF00012 domain through bioinformatics studies, including gene structure, distribution, synteny, phylogenetic tree, protein-protein interactions, gene ontology, and previous RNA-seq data analysis followed by qRT-PCR analysis. Based on the phylogenetic analysis, the 23 candidate genes were classified into five subfamilies where the same subfamily contains similar SlHsp70 proteins. Many pairs of SlHsp70 gene duplications have appeared, consisting of tandem and segment duplication. In addition, analysis of previous RNA-seq besides the gene ontology gave us significant evidence about the vital roles of these genes during tomato development and growth. The SlHsp7s showed different responses, which were varied depend on different plant tissues and types of heavy metal. Some of the SlHsp70s were up-regulated after heavy metal exposure, such as Cd2+/SlHsp70-23 and Mn2+/ SlHsp70-8. Still, down-regulated others such as Fe2+/ SlHsp70-18. Finally, our gene expression analysis revealed the significant roles of the Hsp70s, especially, SlHsp70- 3, SlHsp70-8, SlHsp70-12, SlHsp70-19, and SlHsp70-23, with the different heavy metals treatments.


2020 ◽  
Vol 23 (1) ◽  
pp. 5-13
Author(s):  
S Yin ◽  
W Li ◽  
G Yang ◽  
Y Cheng ◽  
Q Yi ◽  
...  

AbstractInduced pluripotent stem cells (iPSCs), generated from somatic cells, not only possess similar characteristics with embryonic stem cells (ESCs), but also present more advantages than ESCs in medical applications. The classical induction method that utilizes the integration of exogenous genes into chromosomes may raise the potential risk of the safety of iPSCs. To investigate the potential correlation between the integration sites of exogenous transcription factors (TFs) and iPSCs’ pluripotency and safety, the integration of exogenous genes in three iPSC lines, which met the golden standard of murine developmental assay (tetraploid complementation), were analyzed. Twenty-two integration sites of exogenous TFs were identified by nested inverse polymerase chain reaction (iPCR) and 39 flanking genes’ functions were analyzed by gene ontology (GO). In the 22 integrated sites, 17 (77.3%) were located in the intergenic regions and the remainder were located in introns far from the transcription start sites. Microarray analysis of the flanking genes in these cells showed that there was no distinct difference in expression levels between the iPSCs, ESCs and mouse embryonic fibroblast (MEF), suggesting that the integration of exogenous TFs has no significant influence on the expression of flanking genes. Gene ontology analysis showed that although most of the flanking genes were housekeeping genes, which were necessary for basic life activity, none of these 39 flanking genes have correlation with tumorigenesis or embryogenesis, suggesting that the integration sites hold low risk of tumorigenesis.


2021 ◽  
Vol 51 (9) ◽  
pp. 1264-1273
Author(s):  
Fei ZHENG ◽  
Xin GUO ◽  
BoYang GUO ◽  
XianLiang HUANG ◽  
Bing CHEN

Sign in / Sign up

Export Citation Format

Share Document