scholarly journals The Emerging Field Trends Erosion-Free Electric Hall Thrusters Systems

2021 ◽  
Author(s):  
Iryna Litovko ◽  
Alexey Goncharov ◽  
Andrew Dobrovolskyi ◽  
Iryna Naiko

The Hall-type accelerator with closed Hall current and open (that is unbounded by metal or dielectric) walls was proposed and considered both theoretically and experimentally. The novelty of this accelerator is the use of a virtual parallel surface of the anode and the cathode due to the principle of equipotentialization of magnetic field lines, which allows to avoid sputtering of the cathode surface and preserve the dynamics of accelerated ions. The formation of the actual traction beam should be due to the acceleration of ions with the accumulated positive bulk charge. A two-dimensional hybrid model in cylindrical coordinates is created in the framework of which the possibility of creation a positive space charge at the system axes is shown. It is shown that the ions flow from the hump of electrical potential can lead to the creation of a powerful ion flow, which moves along the symmetry axis in both sides from the center.

2012 ◽  
Vol 08 ◽  
pp. 364-367
Author(s):  
YOSUKE MIZUNO ◽  
MARTIN POHL ◽  
JACEK NIEMIEC ◽  
BING ZHANG ◽  
KEN-ICHI NISHIKAWA ◽  
...  

We perform two-dimensional relativistic magnetohydrodynamic simulations of a mildly relativistic shock propagating through an inhomogeneous medium. We show that the postshock region becomes turbulent owing to preshock density inhomogeneity, and the magnetic field is strongly amplified due to the stretching and folding of field lines in the turbulent velocity field. The amplified magnetic field evolves into a filamentary structure in two-dimensional simulations. The magnetic energy spectrum is flatter than the Kolmogorov spectrum and indicates that the so-called small-scale dynamo is occurring in the postshock region. We also find that the amplitude of magnetic-field amplification depends on the direction of the mean preshock magnetic field.


1990 ◽  
Vol 140 ◽  
pp. 379-380
Author(s):  
Kazunari Shibata ◽  
Ryoji Matsumoto

Magnetohydrodynamic (MHD) mechanisms producing radio lobes, shells, and filaments in the Galactic center as well as in the gas disk of the Galaxy are studied by using two-dimensional MHD code: (a) the explosion in a magnetized disk, (b) the interaction of a rotating disk with vertical fields, and (c) the nonlinear Parker instability in toroidal magnetic fields in a disk. In all cases, dense shells or filaments are created along magnetic field lines in a transient state, in contrast to the quasi-equilibrium filaments perpendicular to magnetic fields.


2021 ◽  
pp. 111-116
Author(s):  
I.V. Litovko ◽  
V.Yu. Bazhenov ◽  
A.A. Goncharov ◽  
A.N. Dobrovolsky ◽  
I.V. Naiko

2D-hybrid model was created for the proposed new type accelerator with a virtual cathode which allows to avoid sputtering of the cathode surface and to preserve the dynamics of accelerated ions. In the framework of the model, it was shown that ions first form a positive space charge in the system center, and eventually, under an ac-tion of created own electric field, emerge from both ends of the system.


1991 ◽  
Vol 46 (1) ◽  
pp. 179-199 ◽  
Author(s):  
Andrew N. Wright ◽  
Mitchell A. Berger

The dissipation of relative magnetic helicity due to the presence of a resistive reconnection region is considered. We show that when the reconnection region has a vanishing cross-section, helicity is conserved, in agreement with previous studies. It is also shown that in two-dimensional systems reconnection can produce highly twisted reconnected flux tubes. Reconnection at a high magnetic Reynolds number generally conserves helicity to a good approximation. However, reconnection with a small Reynolds number can produce significant dissipation of helicity. We prove that helicity dissipation in two-dimensional configurations is associated with the retention of some of the inflowing magnetic flux by the reconnection region, vr. When the reconnection site is a simple Ohmic conductor, all of the magnetic field parallel to the reconnection line that is swept into vr is retained. (In contrast, the inflowing magnetic field perpendicular to the line is annihilated.) We are able to relate the amount of helicity dissipation to the retained flux. A physical interpretation of helicity dissipation is developed by considering the diffusion of magnetic field lines through vr. When compared with helicity-conserving reconnection, the two halves of a reconnected flux sheet appear to have slipped relative to each other parallel to the reconnection line. This provides a useful method by which the reconnected field geometry can be constructed: the incoming flux sheets are ‘cut’ where they encounter vr, allowed to slip relative to each other, and then ‘pasted’ together to form the reconnected flux sheets. This simple model yields estimates for helicity dissipation and the flux retained by vr in terms of the amount of slippage. These estimates are in agreement with those expected from the governing laws.


1995 ◽  
Vol 299 ◽  
pp. 153-186 ◽  
Author(s):  
P. A. Davidson

It is well known that the imposition of a static magnetic field tends to suppress motion in an electrically conducting liquid. Here we look at the magnetic damping of liquid-mental flows where the Reynolds number is large and the magnetic Reynolds number is small. The magnetic field is taken as uniform and the fluid is either infinite in extent or else bounded by an electrically insulating surface S. Under these conditions, we find that three general principles govern the flow. First, the Lorentz force destroys kinetic energy but does not alter the net linear momentum of the fluid, nor does it change the component of angular momentum parallel to B. In certain flows, this implies that momentum, linear or angular, is conserved. Second, the Lorentz force guides the flow in such a way that the global Joule dissipation, D, decreases, and this decline in D is even more rapid than the corresponding fall in global kinetic energy, E. (Note that both D and E are quadratic in u). Third, this decline in relative dissipation, D / E, is essential to conserving momentum, and is achieved by propagating linear or angular momentum out along the magnetic field lines. In fact, this spreading of momentum along the B-lines is a diffusive process, familiar in the context of MHD turbulence. We illustrate these three principles with the aid of a number of specific examples. In increasing order of complexity we look at a spatially uniform jet evolving in time, a three-dimensional jet evolving in space, and an axisymmetric vortex evolving in both space and time. We start with a spatially uniform jet which is dissipated by the sudden application of a transverse magnetic field. This simple (perhaps even trivial) example provides a clear illustration of our three general principles. It also provides a useful stepping-stone to our second example of a steady three-dimensional jet evolving in space. Unlike the two-dimensional jets studied by previous investigators, a three-dimensional jet cannot be annihilated by magnetic braking. Rather, its cross-section deforms in such a way that the momentum flux of the jet is conserved, despite a continual decline in its energy flux. We conclude with a discussion of magnetic damping of axisymmetric vortices. As with the jet flows, the Lorentz force cannot destroy the motion, but rather rearranges the angular momentum of the flow so as to reduce the global kinetic energy. This process ceases, and the flow reaches a steady state, only when the angular momentum is uniform in the direction of the field lines. This is closely related to the tendency of magnetic fields to promote two-dimensional turbulence.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Juan Maldacena

Abstract We discuss aspects of magnetically charged black holes in the Standard Model. For a range of charges, we argue that the electroweak symmetry is restored in the near horizon region. The extent of this phase can be macroscopic. If Q is the integer magnetic charge, the fermions lead to order Q massless two dimensional fermions moving along the magnetic field lines. These greatly enhance Hawking radiation effects.


2000 ◽  
Vol 10 (04) ◽  
pp. 539-553 ◽  
Author(s):  
E. FRÉNOD ◽  
E. SONNENDRÜCKER

When charged particles are submitted to a large external magnetic field, their movement in first approximation occurs along the magnetic field lines and obeys a one-dimensional Vlasov equation along these field lines. However, when observing the particles on a sufficiently long time scale, a drift phenomenon perpendicular to the magnetic field lines superposes to this first movement. In this paper, we present a rigorous asymptotic analysis of the two-dimensional Vlasov equation when the magnetic field tends to infinity, the observation time scale increases accordingly. Techniques based on the two-scale convergence and the introduction of a second problem enable us to find an equation verified by the weak limit of the distribution function.


2008 ◽  
Vol 74 (5) ◽  
pp. 657-677 ◽  
Author(s):  
I. KOURAKIS ◽  
A. SHALCHI

AbstractThe random displacement of magnetic field lines in the presence of magnetic turbulence in plasmas is investigated from first principles. A two-component (slab/two-dimensional composite) model for the turbulence spectrum is employed. An analytical investigation of the asymptotic behavior of the field-line mean square displacement (FL-MSD) is carried out. It is shown that the magnetic field lines behave superdiffusively for very large values of the position variable z, since the FL-MSD σ varies as σ ~ z4/3. An intermediate diffusive regime may also possibly exist for finite values of z under conditions which are explicitly determined in terms of the intrinsic turbulent plasma parameters. The superdiffusive asymptotic result is confirmed numerically via an iterative algorithm. The relevance to previous results is discussed.


2020 ◽  
Vol 6 (1) ◽  
pp. 25-29
Author(s):  
B.R. Adhikari ◽  
S. Basnet ◽  
H.P. Lamichhane ◽  
R. Khanal

The kinetic trajectory simulation method has been used to study ion velocity profile in a plasma sheath for varying magnetic field at fixed obliqueness. As the electrons have higher velocity compared to that of ions the wall is charged up negatively with respect to the core plasma. The negative potential then attracts the ions and repels electrons forming a thin positive space charge region in front of the wall. This positive space charge region, known as the ‘sheath’ separates the negatively charged wall from the quasineutral ‘presheath’ plasma. The ions moving towards the wall have to satisfy the Bohm criterion to ensure the stability of the overall plasma. The mean value as well as oscillation frequency of velocity of ions change as the magnetic field is varied from 1.5 to 10.5 mT. The maximum amplitude of normal component of velocity is almost independent of the magnetic field but the maximum amplitude of other components of velocity change and shows oscillating nature as the magnetic field changes.


Sign in / Sign up

Export Citation Format

Share Document