scholarly journals Soybean Seed Compounds as Natural Health Protectors

2021 ◽  
Author(s):  
Gabriel Giezi Boldrini ◽  
Glenda Daniela Martin Molinero ◽  
María Verónica Pérez Chaca ◽  
Nidia Noemí Gómez ◽  
Silvina Mónica Alvarez

Glycine max (L) Merrill, better known as soy or soybean, is a legume of asian origin considered an excellent biotype, given the fact that it contains almost everything the human being needs for the diet. Its cultivation worldwide is one of the most important, and soy itself and its derivatives are highly on demand. The health effects of soy derived foods have been investigated for more than 25 years, and some of them remain controversial. On the other hand, we wondered if soy could be used to ameliorate the toxic effects of heavy metals. Therefore, in this chapter we review general characteristics of soy as well as its nutritional potential, and we compiled the newest information about the health effects of soy. In order to test our hypothesis, we developed a model of animals exposed to cadmium, and we gave them a soy based diet, comparing it with a casein-based diet as control. This allowed us to collect information about its effect on the respiratory and nervous system. Among the results of this review, we show that it reduces the cholesterol level and obesity while also having antidiabetic effects. We enumerate the benefits of soy-based diets on the respiratory system, such as protection against lung cancer and radiotherapy, better lung function in asthma patients and protection against cadmium intoxication. In the cardiovascular system it reduces the risk of coronary heart disease, improves blood pressure, glycemic control, and inflammation while it reduces not all but some of the alterations induced by cadmium exposure on the aorta and heart. It apparently promotes neurogenesis, improves cognitive functions, and reduces the oxidative stress and apoptosis induced by cadmium exposure in the cerebellum. Taken all together, this information let us conclude that soy consumption would exhibit numerous benefits for human health, although future studies should try to elucidate the best outcome considering variables such as gender, age, treatment duration and dosage of soy products consumption in the diet.

2020 ◽  
Vol 27 (2) ◽  
pp. 251-266
Author(s):  
Muhammad Ehsan Safdar ◽  
Muhammad Ather Nadeem ◽  
Abdul Rehman ◽  
Amjed Ali ◽  
Nasir Iqbal ◽  
...  

Little is known about best herbicidal weed option for weed eradication in soybean in agro-climatic circumstances of Sargodha, Punjab, Pakistan. A two year field study was accomplished at College of Agriculture experimental site Sargodha in spring seasons of 2018 and 2019 to evaluate the efficacy of different herbicides adjacent to major weeds present in soybean. The study consisted of 8 herbicide treatments including two pre-emergence herbicides (pendimethalin at 489.1 g a.i. ha-1, pendimethalin + S-metolachlor at 731.1 g a.i. ha-1) which are applied immediately after sowing and six post-emergence herbicides (oxyfluorfen at 237.1 g a.i. ha-1, metribuzin at 518.7 g a.i. ha-1, quizalofop-p-ethyl at 148.2 g a.i. ha-1, acetochlor at 741 g a.i. ha-1, halosulfuron at 37 g a.i. ha-1and topramezone at 21.5 g a.iha-1) which were used 25 days subsequent to sowing. In contrast to control, all herbicides have shown significant decline in weed density (up to 94%) and dry weight (up to 88%); and caused significant increases in plant height (up to 85%), pod bearing branches (up to 77%), number of pods per plant (up to 83%), 100-seed weight (up to 37%) and seed yield (up to 160%) of soybean. Among herbicides, topramezone at 21.5 g a.i ha-1 gave significantly the highest (1234 and 1272 kg ha-1 in the year 2018 and 2019) seed yield of soybean and HEIs (1.28 and 1.03 in year 2018 and 2019, respectively). However, oxyfluorfen at 237.1 g a.i. ha-1, pendimethalin + S-metolachlor at 731.1 g a.i. ha-1, pendimethalin at 489.1 g a.i. ha-1, quizalofop-p-ethyl at 148.2 g a.i.ha-1 followed it. The regression analysis depicted a significant negative moderate relationship of soybean seed yield with weed dry weight (R2 = 0.7074), and pods per plant (R2 = 0.7012) was proved to be the main yield component responsible for higher yield of soybean.


2021 ◽  
Vol 13 (6) ◽  
pp. 1384-1388
Author(s):  
Numlil Khaira Rusdi ◽  
Weri Lia Yuliana ◽  
Erni Hernawati Purwaningsih ◽  
Andon Hestiantoro ◽  
Kusmardi Kusmardi

Plant Disease ◽  
2003 ◽  
Vol 87 (4) ◽  
pp. 449-449 ◽  
Author(s):  
J. E. Kurle ◽  
S. L. Gould ◽  
S. M. Lewandowski ◽  
S. Li ◽  
X. B. Yang

In August 2002, soybean (Glycine max (L.) Merr.) plants exhibiting foliar and root symptoms typical of sudden death syndrome were observed in Blue Earth and Steele counties in south-central Minnesota. Leaf symptoms ranging from small chlorotic spots to prominent interveinal necrosis were present on soybean plants at the R6 to R7 growth stage. As plants matured, complete defoliation took place with only petioles remaining. Symptomatic plants had necrotic secondary roots, truncated taproots, and discolored cortical tissue at the soil line. Blue sporodochia containing macroconidia were observed on the taproot of affected plants at both locations (3,4). Multiple cultures from both locations were obtained by transferring macroconidia from the sporodochia to potato dextrose agar (PDA) and modified Nash-Snyder Medium (NSM) (3). After 14 days, isolations were made from fungal colonies exhibiting bluish pigmentation and masses of bluish macroconidia (4). The isolates grew slowly, developed a bluish color, and formed sporodochia containing abundant macroconidia on NSM. These isolates were identified as Fusarium solani (Mart.) Sacc. f. sp. glycines based on colony characteristics and morphology of macroconidia (2). Pathogenicity tests were conducted with a single isolate from each location. The isolate from Blue Earth County was inoculated as mycelia in a plug of media onto taproots of plants of susceptible cvs. Williams 82 and Spencer at the V2 growth stage. Chlorotic spots appeared on leaves after 12 days of growth at 22 to 25°C in the greenhouse. Interveinal necrosis appeared after 15 days (4). The isolate from Steele County was used to inoculate the susceptible cv. Great Lakes 3202. Sorghum seed (3 cm3) infested with mycelia of the isolate were placed 2 to 3 cm below soybean seed planted in Cone-Tainers. Noninfested sorghum seed was used as a control. Plants were maintained for 21 days at 22 to 28°C in the greenhouse. Chlorotic spots appeared on leaves of inoculated plants within 21 days after planting followed by the development of interveinal chlorosis and necrosis (1). Molecular analysis further supported the identification of the Steele County isolate as F. solani f. sp. glycines. Polymerase chain reaction with specific primers Fsg1 and Fsg2 of total genomic DNA extracted from the Steele County isolate amplified a 438-bp DNA fragment identical with that extracted from previously identified isolates of F. solani f. sp. glycines (1). In 2002, symptoms of sudden death syndrome were also reported in Olmsted, Freeborn, and Mower counties. Although studies are needed to determine the distribution of sudden death syndrome in the state, the occurrence of the symptoms at multiple locations suggests that F. solani f. sp. glycines is widely distributed in southeast and south-central Minnesota. The counties where sudden death syndrome symptoms were reported are located in the most productive soybean-growing region of Minnesota. Sudden death syndrome could be a serious threat to soybean production in this area since poorly drained, heavy, clay soils are common, and soil temperatures 18°C or less are normal before the end of May. References: (1) S. Li et al. Phytopathology 90:491, 2000. (2) K. W. Roy. Plant Dis. 81:566, 1997. (3) K. W. Roy et al. Plant Dis. 81:1100, 1997. (4) K. W. Roy. Plant Dis. 81:259, 1997.


2017 ◽  
Vol 5 (1) ◽  
pp. 1
Author(s):  
Siti Rodiah ◽  
Zulfatunnisa Zulfatunnisa ◽  
Sumadi Sumadi ◽  
Anne Nuraini ◽  
Meddy Rachmadi ◽  
...  

The variation of the seed size in each species and individuals might be from of difference species adaptation for  a difference environment. This difference may also arise from the constraints of limited formation of seed size. The use of adaptive ciltivars on the growth environment is very influential on the succes in the farm field. This research was aimed to find the adaptation of phase and size seed of two cultivars of soybeans in Jatinangor and Cikajang. This research was held in Jatinangor (Sumedang regency) and Cikajang (Garut regency) from April to July 2016. The design that used in this research was Randomized Block Design (RBD) and Duncan at 5% rate. Improved cultivars that tested in this research were placed at Grobogan and Anjasmoro which were repeated 5 times. The results of experiment showed that adaptation of size seed showed of 100 grains and large seeds. The low temperature condition can increase of variability of seed size. Heterogeneity of environment can not sustain the size of soybean seed. Genetic and environment factors influence significantly for weight of 100 grains and seed size Grobogan in Jatinangor. The weight of 100 grains Grobogan in Jatinangor and Cikajang haved a greater than Anjasmoro. Environmental factors influence yield of soybean, weight of 100 grains of cultivars in Cikajang haved a greater than Jatinangor caused by the seed size.


2020 ◽  
Vol 35 (2) ◽  
pp. 150-157
Author(s):  
Patrícia Pereira Dias ◽  
Saulo Fernando Gomes de Sousa ◽  
Paulo Roberto Arbex Silva ◽  
Tiago Pereira da Silva Correia ◽  
Anderson Ravanny de Andrade Gomes

A PROFUNDIDADE DE SEMEADURA DA SOJA NA PLANTABILIDADE   PATRÍCIA PEREIRA DIAS1*, SAULO FERNANDO GOMES DE SOUSA2, PAULO ROBERTO ARBEX SILVA3, TIAGO PEREIRA DA SILVA CORREIA4 e ANDERSON RAVANNY DE ANDRADE GOMES5   * Parte do texto foi extraído da tese da autora 1 Departamento de Produção Vegetal, Universidade Estadual Paulista ‘Júlio de Mesquita Filho’ - Av. Universitária, 3780 - Altos do Paraíso, 18610-034, Botucatu - SP, Brasil. [email protected] 2 Agroefetiva, Rua Lourival Ferreira, 11 - Distrito Industrial III, 18608-853, Botucatu - SP, Brasil.  [email protected] 3 Departamento de Engenharia Rural e Socioeconomia, Universidade Estadual Paulista ‘Júlio de Mesquita Filho’ - Av. Universitária, 3780 - Altos do Paraíso, 18610-034, Botucatu - SP, Brasil.  [email protected] 4 Faculdade de Agronomia e Medicina Veterinária, Universidade de Brasília, Caixa - Campos Universitário Darci Ribeiro ICC – Asa Norte, 04508, Brasília - DF, Brasil. [email protected] 5 Faculdade Regional da Bahia, Rodovia AL 220, 3630 - Senador Arnon De Melo - Planalto, Arapiraca – AL, Brasil. [email protected]   RESUMO: O objetivo deste trabalho foi avaliar a cultura da soja semeada a campo em diferentes profundidades das sementes e épocas de semeadura e, dessa maneira, saber o quanto esses fatores influenciam a emergência e sobrevivência das plantas. O experimento foi conduzido em dois anos agrícolas, 2015/16 e 2016/17, com sementes de soja cultivar 5D634, na Fazenda Lageado, da Faculdade de Ciências Agronômicas – UNESP, Botucatu (SP), Brasil. O delineamento foi de blocos ao acaso em esquema fatorial 6 × 2, com seis tratamentos referentes às profundidades das sementes na mesma linha de semeadura: 0,02, 0,05 e 0,08 m do nível do solo, e combinação e alternância entre eles: 0,02 e 0,05, 0,02 e 0,08, 0,05 e 0,08 m e duas épocas de semeadura: outubro e novembro, com quatro repetições, totalizando 48 parcelas. Para a análise estatística, os dados foram submetidos à análise de variância (ANOVA), utilizando o teste de Tukey a 5% de probabilidade. A perda foi acima de 10% no estande de plantas na semeadura mais profunda (0,08 m), aliada à menor precipitação (outubro/2016), que contribuiu significativamente para esse resultado. Desta forma, a plantabilidade é prejudicada com o erro da profundidade de semeadura, aqui representada pela emergência e sobrevivência de plantas.   Palavras-chave: Glycine max L., Plantabilidade, Estande de plantas.   THE SOYBEAN SOWING DEPTH IN PLANTABILITY   ABSTRACT: The aim of this work was evaluate the sowing of soybean seed with error in soil deposition and different month of sowing. The field experiment was carried out during two years (2015 and 2016) at Fazenda Lageado, Faculty of Agronomic Sciences - UNESP / Botucatu - SP, Brazil. The plots were randomized blocks in 6 × 2 factorial, six treatments referring to the depth of the seeds in soil: 0.02 (T1); 0.05 (T2 - control) and 0.08 (T3); 0.02 and 0.05 (T4); 0.02 and 0.08 (T5); 0.05 and 0.08 m (T6) and two sowing times: October and November. For statistical analysis the data were submitted to analysis of variance (ANOVA) using Tukey test at 5% probability. The number of plants in early stage decreased by over 10% in the deep seeding (0.08 m), added to the less rainfall (October / 2016) which contributed significantly to this result. Therefore, plantability is damaged by the error of sowing depth, represented here by the emergence and survival of plants.   Keywords: Glycine max L., Plantability, Early stage.


Author(s):  
Rama T. Rashad ◽  
Rashad A. Hussien

The solubility and availability of Si from the feldspar, silica, and zeolite as Si-bearing minerals were studied in a sandy soil. Silicon uptake by the soybean (<em>Glycine max L.</em>)<em> </em>plant was discussed. The minerals used were applied before planting in two separate rates; rate 1 ≈ 595.2 and rate 2 ≈ 1190.5 kg ha<strong><sup>-1</sup></strong> accompanied by a ≈ 4.8 kg ha<strong><sup>-1</sup></strong> constant rate of the K-humate sprayed as a solution on soil after planting in a complete randomized block design. The dissolved Si from the different minerals at rate 2 followed an opposite direction to their SiO<sub>2</sub> percentage that may be due to the structural differences: silica (1.46 mg kg<strong><sup>-1</sup></strong> - SiO<sub>2 </sub>=98.4%) &lt; zeolite (1.71 mg kg<strong><sup>-1</sup></strong> - SiO<sub>2 </sub>=75.9%) &lt; feldspar (2.09 mg kg<strong><sup>-1</sup></strong> - SiO<sub>2 </sub>= 71.9%). The individual mineral treatments at rate 2 have almost decreased the available NPK estimated after soybean harvesting. The K-humate has enhanced the effect of silica at rate 2 for the available N and P. The soybean seed yield (kg ha<strong><sup>-1</sup></strong>) increased significantly by 117.9% for the S1 + H, 109.2% for K-humate and 57.5% for the Z2 + H. The seeds’ Si (mg kg<strong><sup>-1</sup></strong>) increased significantly from 3.6% to 102.9% affected by the silica treatments.


Genome ◽  
2003 ◽  
Vol 46 (4) ◽  
pp. 659-664 ◽  
Author(s):  
Mark Gijzen ◽  
Changren Weng ◽  
Kuflom Kuflu ◽  
Lorna Woodrow ◽  
Kangfu Yu ◽  
...  

Soybean (Glycine max (L.) Merr.) seeds vary in their surface properties. The lustre, or glossiness, of seeds has been classified into several different phenotypes. Soybean seeds that have a dull lustre or moderate bloom (B) may also have abundant seed surface protein, namely, an abundance of the hydrophobic protein from soybean (HPS). The seed surface protein HPS is an allergen (Gly m 1) that causes asthma in persons allergic to soybean dust. In this study, seed lustre and surface protein content are compared among 71 different soybean cultivars and lines. Dull-seeded phenotypes usually possessed abundant surface protein in comparison to shiny-seeded types, although exceptions were observed. An F2 population of 82 individuals from a cross of OX281 (dull lustre, abundant HPS) and Mukden (shiny lustre, trace amounts of HPS) provided a basis for inheritance studies and genetic mapping analysis. Results indicate that dull seed lustre (B) and surface protein (Hps) loci are dominant Mendelian traits that cosegregate and map to soybean linkage group E. Molecular markers were used to construct a genetic map of 28 cM encompassing B and Hps. Two different molecular markers cosegregated with each of the loci. This study provides additional evidence that Hps may play a role in the adhesion of endocarp tissues to the seed, and offers new methods of selection for seed lustre and surface protein composition in soybean.Key words: adhesion, allergen, hydrophobic protein, pericarp, seed coat.


Author(s):  
Sandeep Kumar ◽  
Javeed Ahmad Wani ◽  
Narinder Panotra ◽  
Bilal Ahmad Lone ◽  
Sameera Qayoom ◽  
...  

A field experiment was conducted at KVK, Srinagar during two consecutive kharif seasons of 2010 and 2011 to study the “Effect of phosphorus and sulphur on nutrient and amino acids content of soybean [Glycine max (L.) Merill] under Eutrochrepts”. The experiment was laid down under 16 treatment combinations viz four levels of phosphorus (0, 30, 60, 90 kg P2O5 ha-1) and four levels of sulphur (0, 15, 30, 45 kg S ha-1) in randomized complete block design with three replication . At higher levels of phosphorus application, Zn content of seed decreased and it was maximum at 30 kg P2O5 ha-1. With application of 45 kg S ha-1, N, P, K, Ca, Mg and S content in seed was 6.54, 0.555, 1.881, 0.329, 0.434 and 0.501 per cent respectively while as Zn, Fe, Cu, Mn was 109.99, 99.96, 2.82 and 3.73 mg kg-1, respectively. A significant interaction between P and S on macro as well as micronutrient content except Zn in seed was observed. Combined application of phosphorus and sulphur further enhanced the nutrient content of soybean seed. Combined application of phosphorus and sulphur enhanced the crude protein and oil content in soya seed 1. Individual as well as interaction effect of P and S was significant in enhancing the sulphur containing amino acids viz., cystine cystein and methionine content of soybean seed. Combined application of 45 kg S and 90 kg P2O5 ha-1 recorded significantly higher carbohydrate content (23.49%) in soybean seed. Application of increasing levels of phosphorus and sulphur resulted in gradual increase in linoleic (Omega-6) and linolenic acid (Omega-3).


1991 ◽  
Vol 55 (5) ◽  
pp. 1403-1405 ◽  
Author(s):  
Makoto SHIMOYAMADA ◽  
Kyuya HARADA ◽  
Kazuyoshi OKUBO

Sign in / Sign up

Export Citation Format

Share Document